可持久化01Trie + 异或粽子 (精心)

可持久化 T r i e Trie Trie

学可持久化 T r i e Trie Trie啦,我们先看这道题——最大异或和(传送门
题目描述
给定一个非负整数序列 { a } \{a\}{} {a},初始长度为 N N N

M M M个操作,有以下两种操作类型:

A x A x Ax:添加操作,表示在序列末尾添加一个数 x x x,序列的长度 N + 1 N+1 N+1.
Q Q Q l r x l r x lrx:询问操作,你需要找到一个位置 p p p,满足 l ≤ p ≤ r l \le p \le r lpr,使得: a [ p ] ⊕ a [ p + 1 ] ⊕ . . . ⊕ a [ N ] ⊕ x a [ p ] ⊕ a [ p + 1 ] ⊕ . . . ⊕ a [ N ] ⊕ x a[p] \oplus a[p+1] \oplus ... \oplus a[N] \oplus xa[p]⊕a[p+1]⊕...⊕a[N]⊕x a[p]a[p+1]...a[N]xa[p]a[p+1]...a[N]x最大,输出最大是多少。
输入格式
第一行包含两个整数 N N N, M M M,含义如问题描述所示。
第二行包含 N N N个非负整数,表示初始的序列 A A A
接下来 M M M行,每行描述一个操作,格式如题面所述。

输出格式
假设询问操作有 T T T 个,则输出应该有 T T T 行,每行一个整数表示询问的答案。


有一个序列 A A A ,每次可以进行两种操作,一是在序列尾插入一个数,序列长度 N N N 变为 N + 1 N+1 N+1 ,二是在区间 [ l , r ] [l,r] [l,r] 中找到一个 p p p ,满足 l ≤ p ≤ r l≤p≤r lpr,并使得 A [ p ] ⊕ A [ p + 1 ] ⊕ … ⊕ A [ N ] ⊕ x A [ p ] ⊕ A [ p + 1 ] ⊕ … ⊕ A [ N ] ⊕ x A[p]\oplus A[p+1]\oplus…\oplus A[N]\oplus xA[p]⊕A[p+1]⊕…⊕A[N]⊕x A[p]A[p+1]A[N]xA[p]A[p+1]A[N]x 最大,输出这个最大值。

首先,我们把这个式子拆开,也就变成了 ( A [ 1 ] ⊕ A [ 2 ] ⊕ … ⊕ A [ N ] ) ⊕ ( A [ 1 ] ⊕ A [ 2 ] ⊕ … ⊕ A [ p − 1 ] ) ⊕ x ( A [ 1 ] ⊕ A [ 2 ] ⊕ … ⊕ A [ N ] ) ⊕ ( A [ 1 ] ⊕ A [ 2 ] ⊕ … ⊕ A [ p − 1 ] ) ⊕ x (A[1]\oplus A[2]\oplus…\oplus A[N])\oplus(A[1]\oplus A[2]\oplus…\oplus A[p-1])\oplus x(A[1]⊕A[2]⊕…⊕A[N])⊕(A[1]⊕A[2]⊕…⊕A[p−1])⊕x (A[1]A[2]A[N])(A[1]A[2]A[p1])x(A[1]A[2]A[N])(A[1]A[2]A[p1])x,似乎很简单,但是这道题还有一个在末尾插入的操作,就需要我们用到可持久化 T r i e Trie Trie了。

其实可持久化 T r i e Trie Trie和主席树的思想是类似的,实现方式也有相同之处,就是对每一个前缀异或建一个 01 T r i e 01Trie 01Trie,该继承的继承,该修改的修改,这样就完成了。

插入
void insert(int x)
{   
    int rt=root[node_cnt];      //取出上一个根节点的信息
    root[++node_cnt]=++node;    //新建节点
    for (register int i=24;i>=0;i--)
    {
        int ch=(x>>i)&1;     //取出
        size[node]=size[rt]+1; //长度增加
        trie[node][ch]=node+1; //给节点编号
        trie[node][!ch]=trie[rt][!ch]; //继承上一个根节点的部分子树信息
        rt=trie[rt][ch];     //往下走
        node++;
    }
    size[node]=size[rt]+1;
}
访问
void query(int l,int r,int x)
{
    int lc=root[l],rc=root[r],ans=0; //取出左右子树
    for (register int i=24;i>=0;i--)
    {
        int ch=(x>>i)&1;        //取出
        if (size[trie[rc][!ch]]-size[trie[lc][!ch]]>0) 
                //如果反路有路可走
            lc=trie[lc][!ch],rc=trie[rc][!ch],ans|=1<<i;
                //走反路并更新答案
        else
            lc=trie[lc][ch],rc=trie[rc][ch];  
                //否则只能往下走
    }
    write(ans);
    putchar(10);
}

时空复杂度:总共: O ( 31 ( N + M ) ) O(31(N+M)) O(31(N+M))

A C AC AC代码
// luogu-judger-enable-o2
    #include <bits/stdc++.h>

    using namespace std;
    const int maxn = 2*1e7;
    int root[maxn], node_cnt, node, size[maxn];
    int trie[maxn][3];

    int n, m;

    inline int read() {
        int x(0), w(0);
        char ch(0);
        //ch = getchar();
        while (!isdigit(ch)) w |= ch == '-', ch = getchar();
        while (isdigit(ch))
            x = (x << 3) + (x << 1) + (ch ^ 48), ch = getchar();
        return w ? -x : x;
    }

    inline void write(int x) {
        if (x < 0) putchar('-'), x = -x;
        if (x > 9) write (x / 10);
        putchar(x % 10 + '0');
    }

    inline void insert(int x) {
        int rt = root[node_cnt];
        root[++node_cnt] = ++node;
        for (register int i = 24; i >= 0; i--) {
            int ch = (x >> i) & 1;
            size[node] = size[rt] + 1;
            trie[node][ch] = node + 1;
            trie[node][!ch] = trie[rt][!ch];
            rt = trie[rt][ch];
            node++;
        }
        size[node] = size[rt] + 1;
    }

    inline void query(int l, int r, int x) {
        int lc = root[l], rc = root[r], ans = 0;
        for (register int i = 24; i >= 0; i--) {
            int ch = (x >> i) & 1;
            if (size[trie[rc][!ch]] - size[trie[lc][!ch]] > 0)
                lc = trie[lc][!ch], rc = trie[rc][!ch], ans |= 1 << i;
            else
                lc = trie[lc][ch], rc = trie[rc][ch];
        }
        write(ans);
        putchar(10);
    }
    int getc(){
        char ch = getchar();
        while (ch<'A' || ch>'Z') ch =getchar();
        return ch == 'A';
    }
    int main() {
        n = read();
        m = read();
        int x, sum = 0;
        insert(0);//一定别忘了加
        for (register int i = 1; i <= n; i++)
            x = read(), sum ^= x, insert(sum);
        int l, r, z, ch;
        for (register int i = 1; i <= m; i++) {
            ch = getc();
            if (ch == 1)
                z = read(), sum ^= z, insert(sum);
            else
                l = read(),r = read(),z = read(),query(l-1,r,z^sum);

        }
        return 0;
    }

后续知识前导题 序列合并

题意

两个长度都为 N N N的序列 A A A B B B,各任取一个数共有 N 2 N^2 N2个和,求这些和中最小的 N N N个。( N &lt; = 1 e 5 N&lt;=1e5 N<=1e5

分析

首先,把 A A A B B B两个序列分别从小到大排序,变成两个有序队列。这样,从 A A A B B B中各任取一个数相加得到 N 2 N^2 N2个和,可以把这些和看成形成了 n n n个有序表/队列:

A [ 1 ] + B [ 1 ] &lt; = A [ 1 ] + B [ 2 ] &lt; = … &lt; = A [ 1 ] + B [ N ] A[1]+B[1] &lt;= A[1]+B[2] &lt;= … &lt;= A[1]+B[N] A[1]+B[1]<=A[1]+B[2]<=<=A[1]+B[N]

A [ 2 ] + B [ 1 ] &lt; = A [ 2 ] + B [ 2 ] &lt; = … &lt; = A [ 2 ] + B [ N ] A[2]+B[1] &lt;= A[2]+B[2] &lt;= … &lt;= A[2]+B[N] A[2]+B[1]<=A[2]+B[2]<=<=A[2]+B[N]

… … ……

A [ N ] + B [ 1 ] &lt; = A [ N ] + B [ 2 ] &lt; = … &lt; = A [ N ] + B [ N ] A[N]+B[1] &lt;= A[N]+B[2] &lt;= … &lt;= A[N]+B[N] A[N]+B[1]<=A[N]+B[2]<=<=A[N]+B[N]

接下来,就相当于要将这 N N N个有序队列进行合并排序:

首先,将这 N N N个队列中的第一个元素放入一个堆中;

然后;每次取出堆中的最小值。若这个最小值来自于第 k k k个队列,那么,就将第k个队列的下一个元素放入堆中。

时间复杂度: O ( N l o g N ) O(NlogN) O(NlogN)

有了这道题做前导知识,就可以解决下面这个问题。


异或粽子(紫题Warning ) 传送门

题目描述

小粽是一个喜欢吃粽子的好孩子。今天她在家里自己做起了粽子。

小粽面前有 n n n 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 1 1 1 n n n。第 i i i 种馅儿具有一个非负整数的属性值 a i a_i ai 。每种馅儿的数量都足够多,即小粽不会因为缺少原料而做不出想要的粽子。小粽准备用这些馅儿来做出 k k k 个粽子。

小粽的做法是:选两个整数数 l l l , r r r,满足 1 ⩽ l ⩽ r ⩽ n 1⩽l⩽r⩽n 1lrn,将编号在 [ l , r ] [l,r] [l,r] 范围内的所有馅儿混合做成一个粽子,所得的粽子的美味度为这些粽子的属性值的异或和。(异或就是我们常说的 x o r xor xor 运算,即 C/C++ 中的 ˆ 运算符或 Pascal 中的 x o r xor xor 运算符)

小粽想品尝不同口味的粽子,因此它不希望用同样的馅儿的集合做出一个以上的粽子。

小粽希望她做出的所有粽子的美味度之和最大。请你帮她求出这个值吧!

分析

很显然 ,题目想让你求出长度为N序列的前k大的 A [ l ] ⊕ A [ l + 1 ] ⊕ … ⊕ A [ r ] ( 1 ≤ l ≤ r ≤ N ) A[l]⊕A[l+1]⊕…⊕A[r](1≤l≤r≤N) A[l]A[l+1]A[r](1lrN) 区间异或和。 ( N &lt; = 5 e 5 ) (N&lt;=5e5) (N<=5e5)
怎么考虑呢?
很显然可以构造前缀异或和数组 s u m sum sum ,那只需要找到前 k k k m a x ( s u m [ i ] ⊕ s u m [ j ] ( 0 ≤ i ≤ j ≤ N ) ) max(sum[i]⊕sum[j](0≤i≤j≤N)) max(sum[i]sum[j](0ijN)) ,问题就解决了。
关键是怎么找到这前 k k k对呢?
对于区间 [ L , R ] [L,R] [L,R] 如果我们固定了右端点 R R R,在 [ 0 , R − 1 ] [0,R-1] [0,R1] 中找一个数异或 s u m r sum_r sumr 最大,可以使用可持久化 01 T r i e 01Trie 01Trie 解决,复杂度 O ( l o g N ) O(logN) O(logN)
那我们把这 n n n s u m sum sum放到堆里。
每次取出最大的那个状态。设这个状态左端点在 [ l , r ] [l,r] [l,r] ,与 s u m x sum_x sumx
​ 异或起来最大的位置在 k k k,那么我们把状态的左端点分割成 [ l , k − 1 ] [l,k−1] [l,k1] [ k + 1 , r ] [k+1,r] [k+1,r] 后放入堆中。
很多小盆友看到这里肯定会问:为什么要把这个状态拆分了??
删除一个数,剩下的所有后缀异或和都会异或上删掉的数,所以可以全局维护一个 t a g tag tag,删一个数就用tag异或上它,在查询到tag上这个位上为1时就要反着走。
想到这里,突然有点其他的想法,对于类似的删除点或状态的问题对后面的都产生了影响(比如前缀和数组),如果顺序修改的话是 O ( N ) O(N) O(N)的,不如考虑另外构建一个树状数组前缀和差分 t a g tag tag,修改和查询都做到 O ( l o g N ) O(logN) O(logN)

//代码来源题解
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=500000+10;
int n,k,rt[maxn],cnt;ll a[maxn],ans;

struct node
{
    int ch[2],siz,id;
}t[maxn*40];

inline ll read()
{
    register ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return (f==1)?x:-x;
}

void insert(int &now,int pre,int bit,int id,ll val)
{
    now=++cnt;t[now]=t[pre];t[now].siz++;
    if(bit==-1){t[now].id=id;return;}
    if((val>>bit)&1) insert(t[now].ch[1],t[pre].ch[1],bit-1,id,val);
    else insert(t[now].ch[0],t[pre].ch[0],bit-1,id,val); 
}

int query(int u,int v,int bit,ll val)
{
    if(bit==-1) return t[v].id;
    int d=(val>>bit)&1;
    if(t[t[v].ch[d^1]].siz-t[t[u].ch[d^1]].siz>0) return query(t[u].ch[d^1],t[v].ch[d^1],bit-1,val);
    return query(t[u].ch[d],t[v].ch[d],bit-1,val);
}

struct State
{
    int l,r,x,id;ll val;
    State(int _l=0,int _r=0,int _x=0)
    {
        l=_l;r=_r;x=_x;
        id=query(rt[l-1],rt[r],31,a[x]);
        val=a[x]^a[id-1];
    }
};
inline bool operator < (const State &a,const State &b)
{
    return a.val<b.val;
}
priority_queue<State> pq;

int main()
{
    n=read(),k=read();
    for(int i=1;i<=n;i++) a[i]=a[i-1]^read();
    for(int i=1;i<=n;i++) rt[i]=rt[i-1],insert(rt[i],rt[i],31,i,a[i-1]);
    for(int i=1;i<=n;i++) pq.push(State(1,i,i));
    while(k--)
    {
        State u=pq.top();pq.pop();ans+=u.val;
        if(u.l<u.id) pq.push(State(u.l,u.id-1,u.x));
        if(u.id<u.r) pq.push(State(u.id+1,u.r,u.x));
    }
    printf("%lld\n",ans);
    return 0;
}

理解还有不到位的地方,若以后遇到类似的再回头看看。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值