迷途中的前进

其实,我们每一个人有时候都是迷路的孩子,但是还得在摸索中前行!

icvCreateCARTStageClassifier训练强分类器源代码框架

icvCreateCARTStageClassifier函数的详细分析见我博文中的另外一篇文章http://blog.csdn.net/ding977921830/article/details/46442805,这篇文章也是转载的迷雾forest博客中的一篇文章http://blog.csdn....

2015-06-30 19:32:42

阅读数:620

评论数:0

icvInitCARTHaarClassifier

icvInitCARTHaarClassifier *初始化分类回归树haar分类器函数 *作用:把括号里的参数进行传递,也就是把后两个参数都传递给第一个参数 *具体来说就是,首先把intHaarFeatures 的特征按照cart中compidx[i]的顺序传递给carthaar(包括ha...

2015-06-26 14:42:02

阅读数:520

评论数:0

cvBoostStartTraining

cvBoostStartTraining * * 该函数的作用是在第一个弱分类器训练时,初始化训练过程,计算特征值,并初始化样本权重 * * 参数含义如下: * trainClasses * 它是训练样本类的向量,每个元素要么是0,要么是1;而且数据0,1的数据烈性必须...

2015-06-26 09:37:39

阅读数:561

评论数:0

cvUserdata

/* Passed to callback functions */ typedef struct CvUserdata //首先定义结构体 { CvHaarTrainingData* trainingData; CvIntHaarFeatures* haarFeatures;...

2015-06-25 21:12:58

阅读数:480

评论数:0

CV_HAAR_FEATURE_DESC_MAX和CV_HAAR_FEATURE_MAX

#define CV_HAAR_FEATURE_MAX 3 //预定义的一个宏,在程序中表示一个haar特征由至多三个矩形组成 #define CV_HAAR_FEATURE_DESC_MAX 20 //预定义的一个宏,描述haar特征的一个...

2015-06-25 14:47:26

阅读数:678

评论数:0

opencv源码分析:icvCreateCARTStageClassifier之二(转载)

本文转自:http://blog.sina.com.cn/s/blog_5f853eb10100sdgn.html,在我博文中有另一篇文章,对icvCreateCARTStageClassifier介绍更为详细,如下http://blog.csdn.net/ding977921830/articl...

2015-06-24 16:34:03

阅读数:383

评论数:0

OpenCV源码中Haar训练及特征提取的代码说明

本文转自:http://www.cnblogs.com/YCwavelet/p/3545525.html。本文虽然是转载的,但是我稍微调整了一下版面,所以看着是比原来的舒服多了。,大家如有疑问还是请参考原文http://www.cnblogs.com/YCwavelet/p/3545525.htm...

2015-06-24 16:08:19

阅读数:2696

评论数:0

CvScalar

typedef struct CvScalar {   double val[4];   }CvScalar; 它是opencv常用的结构体,在于仕琪的《学习opencv》中指出,其意义是RGBA值。当然这个结构体也可以用于其他用处,因为如果把CvScalar看做是一个普通的结构体时 ,其内部只...

2015-06-24 14:10:39

阅读数:5576

评论数:0

cvBoostStartTraining, cvBoostNextWeakClassifier和 cvBoostEndTraining

/****************************************************************************************\ * Boosting ...

2015-06-24 10:50:17

阅读数:723

评论数:0

opencv源码分析:icvGetTrainingDataCallback简介

/* *函数icvGetTrainingDataCallback介绍 *功能:对所有样本计算特征编号从first开始的num个特征,并保存到mat里。 *输入: *CvMat* mat矩阵样本总数个行,num个列。保存每个样本的num个特征值。 *First:特征类型编号的开始处 *Num:要计算...

2015-06-23 16:58:03

阅读数:564

评论数:0

c :函数指针详解

在研究opencv源代码的过程中,处处可见到函数指针,于是翻出来谭浩强的《C程序设计》把函数指针这一块内容再补一补! 1 定义 数据类型 (*指针变量名)(参数表); 注: 数据类型是指的函数返回值的类型; (*指针变量名)两侧的括号不能省略,表示p先与*结合,是指针变量,然后再与后面的(参数表...

2015-06-23 14:36:18

阅读数:464

评论数:0

c++:变量,数组和指针

指针是c++从c语言中继承过来的重要数据类型,它提供了一种较为直接的地址操作手段。 1 数据在内存中的地址    对于高级语言来说,我们是通过定义变量的方式来为数据分配内存空间,使得变量名与该变量所占内存空间相联系 的,然后通过变量名来操作数据,也就是访问数据所占的内存空间。 1.1 变量的...

2015-06-19 09:28:26

阅读数:475

评论数:0

cvEvalCARTClassifier

cvEvalCARTClassifier结构体的内容在cvboost.cpp文件里面,具体内容如下: CV_BOOST_IMPL float cvEvalCARTClassifier( CvClassifier* classifier, CvMat* sample ) { CV_FU...

2015-06-17 16:17:33

阅读数:607

评论数:0

CvValArray和CvCARTNode

CvValArray和CvCARTNode

2015-06-17 10:04:53

阅读数:959

评论数:0

CvClassifier和宏 CV_CLASSIFIER_FIELDS()

/* classifier fields common to all classifiers */ #define CV_CLASSIFIER_FIELDS() \ int ...

2015-06-17 09:40:54

阅读数:958

评论数:0

Adaboost原理、应用

本文转自:http://blog.sina.com.cn/s/blog_77ed43e30101addd.html        Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其...

2015-06-16 12:00:40

阅读数:534

评论数:0

CvStumpClassifier,CvCARTClassifier和CvCARTHaarClassifier

CvStumpClassifier,CvCARTClassifier和CvCARTHaarClassifier的区别 从复杂程度来看: CvStumpClassifier<CvCARTClassifier<CvCARTHaarClassifier 从能代表的范围来看: CvSt...

2015-06-16 10:39:59

阅读数:525

评论数:0

cvCreateMTStumpClassifier中MT的含义

我在研究这个函数代码的过程中,老师搞不清楚这个函数的MT的含义,困扰了我很长时间。一开始我猜测是most threshold,或者是其他的几个,以为是错误的,我就不说了。最后终于搞清楚了--------cvCreateMTStumpClassifier函数(这是一个生成多阈值(Multi-thre...

2015-06-11 17:39:54

阅读数:610

评论数:0

opencv源码分析:cvCreateMTStumpClassifier最优弱分类器的代码框架

cvCreateMTStumpClassifier计算最优弱分类器的代码总体思路

2015-06-10 16:20:39

阅读数:588

评论数:0

Opencv研读笔记:haartraining程序之icvCreateCARTStageClassifier函数详解~

本文转自:http://blog.csdn.net/wsj998689aa/article/details/42398235 之前介绍了haartraining程序中的cvCreateMTStumpClassifier函数,这个函数的功能是计算最优弱分类器,这篇文章介绍一下自己对haartrai...

2015-06-10 15:49:34

阅读数:670

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭