一、什么是拟合问题?
很多时候,我们在数学建模时,会遇到下面这样的情况
已知平面上有n个数据点 希望寻求某个函数 ,使 在某种准则下与所有数据点最为接近,称为此类数学问题为 数据拟合问题
我们通常采用函数逼近的方法,来拟合数据,那么最经常的使用的方法就是 最小二乘逼近方法。
二、对于线性最小二乘法,我们常用多项式拟合
调用 格式: p=polyfit(x,y,m) m 为拟合多项式的次数
调用 格式: yi=polyval(p,xi) p 为上面的多项式,已知xi 求 yi
代码示例:
x=0:0.1:1;
y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];
a=polyfit(x,y,2);
z=polyval(a,x);
plot(x,y,'k+',x,z,'r');
三、对于非线性最小二乘拟合
我们使用 lsqcurvefit() 函数 思想就是
对于 点 以及待拟合函数, 其中 a 为待定参数 ,求 使得
取得最小值
调用格式:[a,J] = lsqcurvefit(fun,a0x,y)
示例,求 拟合函数
最小值
x=0.1:0.1:1;
y=[2.3201 2.6407 2.9707 3.2885 3.6008 3.900 4.2147 4.5191 4.8232 5.1275];
a0=[2 2 2 2];
f=@(a,x)a(1)*x+a(2)*x.^2.*exp(-a(3)*x)+a(4);
[a, J]=lsqcurvefit(f,a0,x,y);
y1=f(a,x);
plot(x,y,'o',x,y1,'-k')
disp(a);
disp(J);
值得大家注意的是,对于非线性优化问题一般采用的是搜索算法求解,需要给出参数初始值。初始值的确定对能否顺利找到最优解至关重要。在实际计算时,经常会因初始参数向量赋值不当找不到最优解或拟合偏差过大的问题。,从而应该多多尝试 不同的初始值来寻找最优的结果。