矩阵的列空间、行空间、维数、秩理解

列空间 ColA

对于 m×n 矩阵 A   列空间就是 A的各列的线性组合的集合,记为 ColA,是\large R^m的 一个子空间,由 矩阵的主元列构成,即Ax=b中,方程的解基本变量。

零空间 NulA

对于 m×n 矩阵 A   零空间就是 齐次方程 Ax=0 的 所有解得 集合 ,记 NulA,是\large R^n 的一个子空间,由 Ax=0 的解构成,即 Ax=0 的解中的 自由变量

子空间的基

\large R^n 中 子空间H的一组基是H中的一个线性无关集,它可以生成 H

维数 dimH

非零子空间H的维数(dimH)是H的任意一个基的向量个数

秩 rankA

矩阵A的秩(rankA)是A列空间的维数,也就是矩阵A主元列的个数

秩定理

如果一个矩阵A 有n列,则 rankA+ dimNulA=n

即列空间的维数和零空间的维数之和为n,也就是 主元列的个数+非主元列的个数为n,也就是 基本变量+自由变量的个数为 n

举例:

矩阵 A=

\large \begin{bmatrix} 2&6& -6 & 6 &3 &6 \\ -2&-3 &6 &-3 &0 &-6 \\ 4& 9 &-12 &9 &3 &12 \\ -2&3 &6 &3 &3 &-6 \end{bmatrix}  

经过化简为

\large \begin{bmatrix} 2 &6 &-6 &6 &3 &6 \\ 0&3 &0 &3 &3 &0 \\ 0&0 &0 &0 &3 &0 \\ 0& 0 &0 &0 &0 &0 \end{bmatrix}

显然主元列 为 第一列、第二列、第五列

列空间的基为 原来的矩阵的主元列

\large \begin{bmatrix} 2\\ -2 \\4 \\-2 \end{bmatrix}\large \begin{bmatrix} 6\\ -3\\ 9\\3 \end{bmatrix}\large \begin{bmatrix} 3\\0\\3 \\3 \end{bmatrix}           维数为3

零 空间 即: Ax=0

\large \begin{bmatrix} 2 &6 &-6 &6 &3 &6 &0 \\ 0&3 &0 &3 &3 &0&0 \\ 0&0 &0 &0 &3 &0 &0\\ 0& 0 &0 &0 &0 &0 &0 \end{bmatrix}

可以得出   \large \begin{bmatrix} x1\\ x2 \\x3 \\x4 \\x5\\x6 \end{bmatrix} =\begin{bmatrix} 3x_3-3x_6 \\ -x_4 \\x_3 \\ x_4 \\x_5 \\x_6\end{bmatrix} = x_3* \begin{bmatrix} 3\\ 0 \\1 \\ 0 \\0 \\ 0 \end{bmatrix} + x_4*\begin{bmatrix} 0\\ -1 \\1 \\ 0 \\0 \\ 0 \end{bmatrix} + x_6 *\begin{bmatrix} -3\\ 0\\0 \\ 0 \\0 \\ 1\end{bmatrix}   

所以零空间为     \large \begin{bmatrix} 3\\ 0 \\1 \\ 0 \\0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0\\ -1 \\1 \\ 0 \\0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} -3\\ 0\\0 \\ 0 \\0 \\ 1\end{bmatrix}  维数为3

由此可以看出 列空间 就是主元列 、 零空间就是非主元列

满秩矩阵

所以可以看出,满秩矩阵就是 rankA=n 的矩阵 ,也就是 全部都是主元列 ,也就是所有列都是 线性无关。

行满秩矩阵 就是 行向量之间线性无关 ,列满秩矩阵 就是 列向量之间线性无关

对于方阵 来说  满秩矩阵 可以说明 这是一个 可逆矩阵(非奇异矩阵)

满秩矩阵是一个很重要的概念, 它是判断一个矩阵是否可逆的充分必要条件

一个方阵A是可逆的当且仅当A的行列式不等于0.

因为当A的行列式等于0,则A的行是线性相关的,即A的转置是线性相关的,则A的转置不可逆,则A就不可逆了。

在深度学习机器学习应用中,经常会有矩阵低秩分解(Low-Rank Matrix Factorization)是一种常见的数学方法,用于将一个高维、高秩的矩阵分解为两个低维、低秩的矩阵的乘积,以压缩数据、降低噪声、提高计算效率等目的。这种方法可以应用于很多领域,例如数据挖掘、图像处理、自然语言处理等。

就比如 SVD奇异值分解

 

 

低秩矩阵和满秩矩阵是矩阵的两种不同性质。它们的主要区别在于矩阵的秩大小不同。

  1. 低秩矩阵:低秩矩阵是指矩阵中非零奇异值的数目比矩阵中的行数和列数中的较小值要小的矩阵。换句话说,就是矩阵中有很多元素可以用其他元素表示出来。低秩矩阵在压缩、降维、图像处理等领域有着广泛的应用。

  2. 满秩矩阵:满秩矩阵是指矩阵的秩等于矩阵的行数和列数中的较小值的矩阵。换句话说,它的秩是最大的,矩阵中没有冗余的元素。满秩矩阵在线性方程组求解、逆矩阵计算、线性变换等领域有着广泛的应用。

总之,低秩矩阵和满秩矩阵在数学和实际应用中有着不同的性质和应用场景,需要根据具体情况进行选择。

### 低向量空间在强化学习中的应用 在强化学习领域,低向量空间的应用主要体现在状态表示上。对于某些任务而言,使用低度的状态描述符可能比直接从像素中提取特征更加高效[^1]。 #### 使用低向量作为输入的例子 当环境能够提供精确且紧凑的状态信息时,可以直接利用这些低据来训练模型。例如,在经典的控制问题如倒立摆(CartPole)游戏中,可以采用四个值——手推车的位置、速度以及杆的角度和角速度构成的四元组作为网络输入: ```python import gymnasium as gym env = gym.make('CartPole-v1') observation, info = env.reset() print(f"Observation shape: {observation.shape}") # 输出应为(4,) ``` 这种做法简化了算法设计过程,并允许更快速地收敛到最优解。然而值得注意的是,尽管在这种情况下处理起来相对容易,但在面对复杂视觉场景的任务时,则需要依赖卷积神经网络或其他机制来进有效的特征抽取[^3]。 #### 政策梯度方法与低向量空间的关系 政策梯度方法通过调整策略参使得期望回报最大化。在这个过程中,如果选择了合适的低表征形式,则有助于加速优化进程并提高最终性能表现。具体来说,就是让代理能够在较少的时间步内学会做出更好的决策[^2]。 #### 实现细节 为了更好地理解如何在一个具体的环境中实施基于低向量的空间建模方式,下面给出一段简单的代码片段用于初始化OpenAI Gym库中的`MountainCarContinuous-v0`环境,并展示其观测值的形式: ```python import gymnasium as gym def init_env(): env_name = 'MountainCarContinuous-v0' env = gym.make(env_name) observation, _ = env.reset() print(f"In environment '{env_name}', each observation has shape {observation.shape}.") init_env() ``` 上述例子展示了如何获取来自特定模拟器的一系列连续变量组成的组作为当前时刻系统的完整刻画;之后便可以根据此构建相应的价值函为概率分布以指导后续动作的选择。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值