code3731 寻找道路

将图反向,从终点spfa,把和终点没有联系的点找出来,

把它们和它们所连接的所有点删去(反向图)

然后再一遍spfa,输出最短路即可

 

代码:

#include<iostream>
#include<cstring>
#include<queue>
#define MAXM 200005
#define MAXN 10005
#define INF 0x3f3f3f3f
using namespace std;

int n,m;
struct edge{
    int to,next,w;
}eg[MAXM];
int head[MAXN];
int cnt=0;
int s,t;
int dist[MAXN];
bool canUse[MAXN];
bool vis[MAXN];

void add(int a,int b,int w){
    cnt++;
    eg[cnt].to=b;
    eg[cnt].next=head[a];
    eg[cnt].w=w;
    head[a]=cnt;
}

void spfa(int st){
    memset(dist,0x7f,sizeof(dist));
    memset(vis,false,sizeof(vis));
    
    queue<int> q;
    if(canUse[st]){
        q.push(st);
        dist[st]=0;
        vis[st]=true;
    }
    
    while(!q.empty()){
        int k=q.front(); q.pop();
        vis[k]=false;
        for(int i=head[k];i!=-1;i=eg[i].next){
            int u=eg[i].to;
            if(canUse[u]){
                if(dist[u]>dist[k]+eg[i].w){
                    dist[u]=dist[k]+eg[i].w;
                    if(!vis[u]){
                        vis[u]=true;
                        q.push(u);
                    }
                }
            }
        }
    }
}

int main(){
    memset(canUse,true,sizeof(canUse));
    memset(head,-1,sizeof(head));
    
    cin>>n>>m;
    int a,b,w;
    for(int i=1;i<=m;i++){
        cin>>a>>b;
        add(b,a,1);
    }
    cin>>s>>t;
    spfa(t);
    for(int i=1;i<=n;i++){
        if(dist[i]>=INF){
            //cout<<"Can't Use:"<<i<<endl;
            canUse[i]=false;
            for(int j=head[i];j!=-1;j=eg[j].next){
                canUse[eg[j].to]=false;
            }
        }
    }
    spfa(t);
    if(dist[s]>=INF)cout<<-1<<endl;
    else cout<<dist[s]<<endl;
    return 0;
}

 

转载于:https://www.cnblogs.com/FuTaimeng/p/5611804.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值