code1105 过河

dp方程很简单:

f[i] = min{ f[i-j] } + stone[i]

但是数据10^9太大了,超时超空间,这样只能过30%

 

来自:http://blog.csdn.net/w19960702123/article/details/40478187

当我们看到10^9与100块石头,和s,t均小于等于10时,我们会想到有的石头间距可能大于t,即要跳好几步才会到达下一块石头的左右处。而我们会发现这些步数是无关紧要的,我们只需要把他们缩小,即在不影响最终结果的基础上mod一下t就行了。

但是为什么要mod t呢?首先,我们可以知道,青蛙最多跳t,由于两石块间的间距远大于t,且这之间没有石头,所以青蛙会以最大的t去走,至少是在第i块石头向后t个距离,到第i+1块向前t个距离处,它会一直跳的(其实不跳t也可以,但是我们想最优,所以青蛙在中间如何跳是无所谓的,那么我们就可以把它极限化,即取t)

解释完mod t,先一步就是推导如何计算了。

既然我们要缩短距离L(L=b[i]-b[i-1])那么我们就需考虑,是不是L的每一个点都能缩。我们利用极限的思想,青蛙跃过一个石头,最多也就到b[i-1]+t处(同理,最少会到b[i] - t ),即 b[i-1]+t 到 b[i] - t 间的距离要缩减。

综上,我们就可以得到一个公式a[i]=a[ i-1]+X , X=(b[i]-t-b[i-1]-t)%t (即缩点后的长度),但是我们怕X会小于t,这样会导致青蛙直接跳过这段距离,所以我们要再加t,即a[i]=a[ i-1]+(b[i]-b[i-1]-2*t)%t +t。

注意:

1.我们只有在L>t 时我们需要缩点

2.不要忘记排序

3.讨论s==t的情况

 

代码:

#include <iostream>  
#include <cstdio>  
#include <cstring>  
#include <cmath>  
#include <algorithm>   
using namespace std;  
int f[100000],a[105],b[105],stone[100000];  
int L,s,t,m,ans;  
int main()  
{  
    cin>>L>>s>>t>>m;  
    for(int i=1;i<=m;i++)cin>>a[i];  
    a[0]=0;
    sort(a+1,a+m+1);  
    //特判
    if(s==t){  
        for(int i=1;i<=m;i++)if(a[i]%t==0)ans++;  
        cout<<ans;  
        return 0;  
    }
    //压缩 
    a[m+1]=L;
    for(int i=1;i<=m+1;i++){    
        if(a[i]-a[i-1]>t)  
            b[i]=b[i-1]+(a[i]-a[i-1]-2*t)%t+t;  
        else b[i]=b[i-1]+(a[i]-a[i-1]);
//        cout<<b[i]<<endl; 
    } 
    L=b[m+1];
    
    memset(stone,0,sizeof(stone));
    for(int i=1;i<=m;i++)stone[b[i]]=1;
    f[0]=0;
    for(int i=1;i<=L+t-1;i++)f[i]=0x3f3f3f3f;
    //dp
    for(int i=1;i<L+t;i++)  
         for(int k=s;k<=t;k++)  
             if(i-k>=0)f[i]=min(f[i-k]+stone[i],f[i]);
    //ans    
    ans=0x3f3f3f3f;  
    for(int i=L;i<L+t;i++)ans=min(ans,f[i]);  
    cout<<ans;
    
    return 0;  
}

 

转载于:https://www.cnblogs.com/FuTaimeng/p/5654162.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值