Coppersmith-Winograd 算法

转自:https://www.douban.com/group/topic/29658298/

 

对正整数 $q$,定义张量 $T$,其对应的多项式为 $p(X,Y,Z)=\sum_{i=1}^q (X_0Y_iZ_i+X_iY_0Z_i+X_iY_iZ_0)$。对于 $\epsilon>0$,定义张量 $T(\epsilon)$,其对应的多项式为 
\begin{align} 
&\left(\sum_{i=1}^q \epsilon^{-2} (X_0+\epsilon X_i)(Y_0+\epsilon Y_i)(Z_0+\epsilon Z_i)\right)\\ 
&-\epsilon^{-3}\left(X_0+\epsilon^2\sum_{i=1}^q X_i\right)\left(Y_0+\epsilon^2\sum_{i=1}^q Y_i\right)\left(Z_0+\epsilon^2\sum_{i=1}^q Z_i\right)\\ 
&+\left(\epsilon^{-3}-q\epsilon^{-2}\right)X_0Y_0Z_0 
\end{align} 
则 $\lim_{\epsilon\to 0} T(\epsilon)=T$ 且 $R(T(\epsilon))\leq q+2$。故 $\underline{R}(T)\leq q+2$。 

出于方便采用如下的记号:将变量 $X_0,\dots,X_q$ 分成两块,其中块 $[0]$ 包含 $X_0$,块 $[1]$ 包含 $X_1,\dots,X_q$。对 $Y$ 和 $Z$ 作同样的处理。令 $X^{[I_1]}Y^{[I_2]}Z^{[I_3]}$ 包含 $p(X,Y,Z)$ 中所有单项式 $X_{j_1}Y_{j_2}Z_{j_3}$ 之和,其中 $j_1,j_2,j_3$ 分别属于块 $[I_1],[I_2],[I_3]$。即 
\begin{align} 
X^{[0]}Y^{[1]}Z^{[1]}&=\sum_{i=1}^q X_0Y_iZ_i,\\ 
X^{[1]}Y^{[0]}Z^{[1]}&=\sum_{i=1}^q X_iY_0Z_i,\\ 
X^{[1]}Y^{[1]}Z^{[0]}&=\sum_{i=1}^q X_iY_iZ_0, 
\end{align} 
其对应的张量分别为 $\langle 1,1,q\rangle$,$\langle 1,q,1\rangle$,$\langle q,1,1\rangle$。并且有 $p(X,Y,Z)=X^{[0]}Y^{[1]}Z^{[1]}+X^{[1]}Y^{[0]}Z^{[1]}+X^{[1]}Y^{[1]}Z^{[0]}$。下面考虑张量 $T^{\otimes N}$ ($N$ 为 $3$ 的倍数),并设其对应的多项式为 $p'(X,Y,Z)$,其中 $X=\{X_{i_1,\dots,i_N}: 0\leq i_t\leq q\}$,对 $Y,Z$ 同理。称 $X_{j_1,\dots,j_N}$ 属于块 $[I_1,\dots,I_N]$,若 $X_{j_t}$ 属于块 $[I_t]$。对 $Y$ 和 $Z$ 作同样的处理。令 $X^{[I_1,\dots,I_N]}Y^{[I'_N,\dots,I'_N]}Z^{[I''_N,\dots,I''_N]}$ 包含 $p'(X,Y,Z)$ 中所有单项式 $X_{j_1,\dots,j_N}Y_{j'_1,\dots,j'_N}Z_{j''_1,\dots,j''_N}$ 之和,其中 $X_{j_1,\dots,j_N},Y_{j'_1,\dots,j'_N},Z_{j''_1,\dots,j''_N}$ 分别属于块 $[I_1,\dots,I_N],[I'_1,\dots,I'_N],[I''_1,\dots,I''_N]$。并且有 
$$ 
p'(X,Y,Z)=\sum X^{[I_1,\dots,I_N]}Y^{[I'_N,\dots,I'_N]}Z^{[I''_N,\dots,I''_N]}. 
$$ 
对任意变量 $X_{j_1,\dots,j_N}$,设其属于块 $[I_1,\dots,I_N]$ 且 $I_1,\dots,I_N$ 中 $0$ 的数量不为 $N/3$(即 $1$ 的数量不为 $2N/3$),则删除 $p'(X,Y,Z)$ 中所有含变量 $X^{j_1,\dots,j_N}$ 的项。类似地处理 $Y$ 和 $Z$。设得到的多项式为 $p''$,对应的张量为 $T'$。则 $\underline{R}(T')\leq \underline{R}\left(T^{\otimes N}\right)\leq (q+2)^N$。这里 $p''$ 为形如 $X^{[I_1,\dots,I_N]}Y^{[I'_N,\dots,I'_N]}Z^{[I''_N,\dots,I''_N]}$ 的 $M={N\choose N/3,N/3,N/3}$ 项之和,其中每一项恰为 $(\langle 1,1,q\rangle\otimes\langle 1,q,1\rangle\otimes\langle q,1,1\rangle)^{\otimes N/3}=\langle q,q,q\rangle^{\otimes N/3}$。若项与项之间是独立的(即不同的项不包含相同的变量),则 $T''=\left(\langle q,q,q\rangle^{\otimes N/3}\right)^{\oplus M}$,并可利用渐近和不等式(定理 4.1)得到 $\omega$ 的上界。但这并不成立,例如 $N=3$ 时 $X^{[0,1,1]}$ 包含在不同的两项 $X^{[0,1,1]}Y^{[1,1,0]}X^{[1,0,1]}$ 和 $X^{[0,1,1]}Y^{[1,0,1]}X^{[1,1,0]}$ 中。接下来进一步删除一些变量以确保独立性:令 $S=\left\{A,B,C\in \{0,1\}^N: A,B,C ~\text{含有 } N/3 \text{ 个 } 0 \right\}$。有 $|S|={N\choose N/3,N/3,N/3}$。取 $S$ 中尽量大的子集 $S'$ 使得对任意 $(A,B,C),(A',B',C'),(A'',B'',C'')\in S'$,$A+B'+C''=(2,\dots,2)$ 仅当 $(A,B,C)=(A',B',C')=(A'',B'',C'')$。利用定理 7.4 证明中的构造,可得 $|S'|\geq ((27/4)^{1/3}-o(1))^N$。删除 $p''$ 中含变量 $X_{i_1,\dots,i_N}$ 的项,如果 ${i_1,\dots,i_N}$ 不属于任何块 $A$ 使得存在 $(A,B,C)\in S'$。类似地删除 $p&

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值