二阶导数验证最大值与最小值

对于$w=ax^2+bxy+cy^2$,可以将其化简为:

$$w=\frac{1}{4a}\left[4a^2\left(x+\frac{b}{2a}y\right)^2+\left(4ac-b^2\right)y^2\right]$$

该式由两个平方项组成,其中$4a^2\left(x+\frac{b}{2a}y\right)^2\ge0$,$\left(4ac-b^2\right)y^2$的符号不确定。当两个平方项的系数都为正数的时候存在极值点,当$a\ge0$时,有极大值,当$a\le0$时,有极小值。一正一负的时候存在鞍点(saddle point),当$\left(4ac-b^2\right)y^2=0$的时候暂时不能确定。

上式同样可以化简为:

$$w=y^2\left[a\left(\frac{x}{y}\right)^2+b\left(\frac{x}{y}\right)^2+c\right]$$

其中,$y^2\ge0$,$\Delta=b^2-4ac$,如果$\Delta>0$,则$a\left(\frac{x}{y}\right)^2+b\left(\frac{x}{y}\right)^2+c$的值可能大于0,也可能小于0,也就意味着$w$存在鞍点;如果$\Delta<0$,则$a\left(\frac{x}{y}\right)^2+b\left(\frac{x}{y}\right)^2+c$的值要么都大于0,要么都小于0,取决于$a$的值,当$a>0$时,$w$存在最小值,当$a<0$时,存在最大值。

转载于:https://www.cnblogs.com/lengyue365/p/4929236.html

<think>好的,用户现在想要详细了解二阶导数。首先,我需要回忆一下之前的对话历史。用户之前让我生成了一份A-Level微积分的详细笔记,里面已经包含了二阶导数的部分,比如在微分应用中提到了凹凸性的判断。现在用户可能希望更深入地了解二阶导数的概念、应用相关例题。 接下来,我需要确定用户的具体需求。用户可能是在学习微积分的过程中遇到了二阶导数的相关内容,需要更详细的解释来帮助理解。可能的用户身份是A-Level的学生,或者刚开始学习微积分的大学生。他们可能需要二阶导数的定义、几何意义、物理意义,以及实际应用的例子,比如凹凸性、极值判断等。 用户的需求可能不仅仅是记住公式,而是理解二阶导数的作用实际应用场景。因此,我需要用清晰的结构,分点解释二阶导数的各个方面,并辅以例题帮助理解。同时,用户可能希望看到二阶导数一阶数的区别,以及它在实际问题中的应用,比如物理中的加速度,或者经济学中的边际成本变化率。 需要注意的是,用户可能对数学术语不太熟悉,所以解释时要尽量使用通俗易懂的语言,避免过于晦涩。同时,结合之前的笔记结构,保持一致性,比如使用标题、子标题、示例总结表格,这样用户复习时更容易对应之前的内容。 另外,用户可能没有明确说出他们遇到的困难,比如可能对二阶导数的符号变化如何影响函数图像不太清楚,或者在实际问题中如何应用二阶导数进行极值判断存在疑惑。因此,在回答中需要详细解释这些点,并通过例题展示应用步骤,确保用户能够通过例子理解抽象概念。 最后,检查是否有遗漏的重要知识点,比如二阶导数测试法判断极值,或者二阶导数为零的情况(拐点)。确保覆盖这些内容,并提供足够的示例注意事项,帮助用户避免常见错误。</think># 二阶导数详解 --- ## 一、基本定义 ### 1. 数学表达式 若函数$f(x)$的一阶数$f'(x)$**可**,则二阶导数为: $$f''(x) = \frac{d}{dx}\left( \frac{df}{dx} \right) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$ ### 2. 符号表示 - Leibniz表示法:$\frac{d^2 y}{dx^2}$ - 牛顿表示法:$\ddot{y}$(物理中常见) - 其他形式:$y''$, $D_{xx}f$ --- ## 二、核心意义 ### 1. 几何意义 - **描述曲线的凹凸性** - $f''(x) > 0$ → 曲线在$x$处**上凸**(U型开口向上) - $f''(x) < 0$ → 曲线在$x$处**下凹**(U型开口向下) - $f''(x) = 0$ → **可能为拐点**(凹凸性改变的位置) ### 2. 物理意义 - **加速度**:位移函数$s(t)$的二阶导数为加速度 $$a(t) = \frac{d^2 s}{dt^2}$$ - **曲率**:描述曲线弯曲程度的量 $$\kappa = \frac{|f''(x)|}{(1 + [f'(x)]^2)^{3/2}}$$ ### 3. 经济学意义 - **边际成本变化率**:若总成本函数为$C(x)$,则$C''(x)$表示单位产量增加时边际成本的变化趋势 - **效用函数的风险偏好**:二阶导数符号可判断消费者风险态度(风险厌恶/偏好) --- ## 三、关键应用 ### 1. 极值判定(二阶导数测试法) **步骤**: ① 通过$f'(x)=0$找到临界点 ② 计算$f''(x)$在临界点的值: - $f''(x_0) > 0$ → **局部最小值** - $f''(x_0) < 0$ → **局部最大值** - $f''(x_0) = 0$ → 无法判断(需用一阶数测试法) **例题**:求$f(x)=x^3-3x^2$的极值 解: - $f'(x)=3x^2-6x=0$ → $x=0$或$x=2$ - $f''(x)=6x-6$ - $x=0$时$f''(0)=-6<0$ → **局部最大值** - $x=2$时$f''(2)=6>0$ → **局部最小值** ### 2. 拐点判定 **定义**:曲线凹凸性发生改变的点$(x_0, f(x_0))$ **判定条件**: ① $f''(x_0)=0$ **或** $f''(x_0)$不存在 ② $f''(x)$在$x_0$两侧**符号改变** **反例**:$f(x)=x^4$ 虽然$f''(0)=0$,但$x=0$两侧$f''(x)=12x^2>0$ → 非拐点 --- ## 四、典型例题 ### 例1:分析函数$f(x)=\ln(x^2+1)$的凹凸区间 **解**: 1. 一阶数:$f'(x)=\frac{2x}{x^2+1}$ 2. 二阶导数: $$f''(x)=\frac{2(x^2+1) - 2x \cdot 2x}{(x^2+1)^2} = \frac{2(1-x^2)}{(x^2+1)^2}$$ 3. 符号分析: - $f''(x)>0$当$|x|<1$ → **上凸** - $f''(x)<0$当$|x|>1$ → **下凹** - 拐点:$x=±1$,坐标$(±1, \ln2)$ ### 例2:物理运动分析 物体运动方程$s(t)=t^3-6t^2+9t$,求加速度最大的时刻 **解**: 1. 速度:$v(t)=s'(t)=3t^2-12t+9$ 2. 加速度:$a(t)=s''(t)=6t-12$ 3. 分析加速度变化: - $a(t)$是线性函数,其数为$6>0$ → **加速度随时间递增** - 在定义域内,最大加速度出现在$t$最大值处(需根据题目给定时间范围判断) --- ## 五、常见误区 | 错误认知 | 正确理解 | |---------|----------| | "二阶导数为零的点一定是拐点" | 必须同时满足**两侧凹凸性变化**,如$f(x)=x^4$在$x=0$处二阶导数为零但无拐点 | | "二阶导数只能用于极值判断" | 还可用于分析曲线的**弯曲程度**、**加速度**等物理量 | | "凹凸性方向容易混淆" | 记忆口诀:**"正凸负凹"**(二阶导数为正时开口向上凸起) | --- ## 六、进阶扩展 ### 1. 参数方程的二阶导数 若曲线由参数方程$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$给出,则: $$\frac{d^2 y}{dx^2} = \frac{d}{dx}\left( \frac{dy/dt}{dx/dt} \right) = \frac{ \frac{d}{dt} \left( \frac{dy}{dx} \right) }{ dx/dt }$$ ### 2. 隐函数求二阶 对$F(x,y)=0$求两次: 1. 一阶:$\frac{dy}{dx} = -\frac{F_x}{F_y}$ 2. 二阶:对一阶结果再次求,注意$y$仍然是$x$的函数 --- > **练习建议**: > 1. 绘制$f(x)=\sin x$的图像,标出凹凸区间(周期为$2\pi$) > 2. 验证函数$f(x)=x^3-3x$在$x=1$处是否为拐点 > 3. 计算参数方程$x=t-\sin t$, $y=1-\cos t$的二阶导数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值