Description
everyone belongs to one of the teams;
every team has at least one member;
every person in the team knows every other person in his team;
teams are as close in their sizes as possible.
This task may have many solutions. You are to find and output any solution, or to report that the solution does not exist.
Input
The first line in the input file contains a single integer number N (2 <= N <= 100) - the total number of persons to divide into teams, followed by N lines - one line per person in ascending order of their identifiers. Each line contains the list of distinct numbers Aij (1 <= Aij <= N, Aij != i) separated by spaces. The list represents identifiers of persons that ith person knows. The list is terminated by 0.
Output
Sample Input
5 2 3 5 0 1 4 5 3 0 1 2 5 0 1 2 3 0 4 3 2 1 0
Sample Output
3 1 3 5 2 2 4
Source
给定 n 个人的认识关系有向图,将他们分为 2 组人,每组的人要相互认识,且两组人数相差尽量小。
构建新图,两个人不相互认识则连一条无向边。然后二分染色(同时记录每个联通块内有哪些点son[i][++num[i]],数量差dis[i]: 0 颜色 - 1 颜色),如果不是二分图,那么就无解。
dp[i][j]表示前i个联通块分两组后第1组-第2组=j的分法是否存在。
差值可能是负数,因此坐标平移,j=差值+100。
dp[i-1][j]==1 则 dp[i][j+dis[i]]=1,dp[i][j-dis[i]]=1;
同时记录新状态是否是由前一状态的差值-dis[i]转移来的:
path[i][j+dis[i]]=1,path[i][j-dis[i]=0;
dp[cnt][ d+100]==1中绝对值最小的 d 就是最小差值,然后从第cnt个联通块推回去,如果path[i][j]^color[当前联通块的点]==1说明这个点是第1组的,因为path[i][j]==1代表第i个联通块的0颜色给第一组。异或为1,则path为0,color为1或者path为1,color为0。
path[i][j]为1,则第 i-1 个联通块时的差值就是当前差值+dis[i]。否则-dis[i]。
#include <cstdio> #define N 205 #define sf(a) scanf("%d",&a) using namespace std; int n,g[N][N],gg[N][N];//原图和新图 int color[N];//染色 int dis[N];//一个联通块里0色-1色的数量差 int cnt,son[N][N];//储存1~cnt联通块的节点 int num[N];//1~cnt联通块的个数 int dp[N][N],path[N][N];//dp和路径记录 int tot[2],team[2][N];//记录两个队的人数和队员 int cl[2];//0色和1色的数量 int dfs(int x,int c){//将x染上c色(0,1) color[x]=c; for(int i=1;i<=n;i++)if(gg[x][i]&&i!=x){ if(color[i]==c)return 0; if(color[i]==-1&&!dfs(i,!c))return 0; } cl[c]++; son[cnt][++num[cnt]]=x; return 1; } int check(){ for(int i=1;i<=n;i++)if(color[i]==-1){ cnt++; cl[1]=cl[0]=0; if(!dfs(i,1))return 0; dis[cnt]=cl[0]-cl[1]; } return 1; } void solve(){ dp[0][100]=1; for(int i=1;i<=cnt;i++) for(int j=0;j<=200;j++)if(dp[i-1][j]){ dp[i][j+dis[i]]=1; path[i][j+dis[i]]=1; if(j>dis[i]){ dp[i][j-dis[i]]=1; path[i][j-dis[i]]=0; } } int d=0; for(;d<100&&!(dp[cnt][d+100]||dp[cnt][-d+100]);d++); if(dp[cnt][d+100])d+=100;else d=100-d; for(int i=cnt;i;i--){ for(int j=1;j<=num[i];j++){ if(path[i][d]^color[j])team[1][++tot[1]]=son[i][j]; else team[0][++tot[0]]=son[i][j]; } if(path[i][d]) d-=dis[i]; else d+=dis[i]; } for(int j=0;j<2;j++) { printf("%d ",tot[j]); for(int i=1;i<=tot[j];i++) printf("%d ",team[j][i]); puts(""); } } int main() { sf(n); for(int i=1;i<=n;i++){ int x; while(sf(x),x) g[i][x]=1; color[i]=-1; } for(int i=1;i<=n;i++) for(int j=i+1;j<=n;j++) if(!g[i][j]||!g[j][i]) gg[i][j]=gg[j][i]=1; if(check()) solve(); else puts("No solution"); }