statsmodels.tsa.arima_model预测时报错TypeError: int() argument must be a string, a bytes-like object or a...

在Python中使用statsmodels的ARIMA模型预测时间序列时遇到TypeError,原因是时间序列数据间隔不统一,导致freq为None。即使修正数据,当start参数不在时间序列内时,仍会报错。解决方案包括检查数据一致性,查阅库的issue,或对比正确示例找出差异。
摘要由CSDN通过智能技术生成

在 python 中用 statsmodels创建 ARIMA 模型进行预测时间序列:

import pandas as pd
import statsmodels.api as sm

df = pd.read_csv("data.csv", index_col=0, parse_dates=True)

mod = sm.tsa.statespace.SARIMAX(df['price'], enforce_stationarity=False, enforce_invertibility=False)

res = mod.fit()
res.get_prediction(start=pd.to_datetime('2018-1-1'))

运行后报错:

TypeError: int() argument must be a string, a bytes-like object or a number, not 'Timestamp'

这种情况的原因是,读入的时间序列数据的时间没有统一的间隔,例如打印mod._index的结果是

DatetimeIndex(['2016-01-01', '2016-01-08', '2016-01-15', '2016-01-22',
               '2016-01-30'],
              dtype='datetime64[ns]', n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值