在 python 中用 statsmodels创建 ARIMA 模型进行预测时间序列:
import pandas as pd
import statsmodels.api as sm
df = pd.read_csv("data.csv", index_col=0, parse_dates=True)
mod = sm.tsa.statespace.SARIMAX(df['price'], enforce_stationarity=False, enforce_invertibility=False)
res = mod.fit()
res.get_prediction(start=pd.to_datetime('2018-1-1'))
运行后报错:
TypeError: int() argument must be a string, a bytes-like object or a number, not 'Timestamp'
这种情况的原因是,读入的时间序列数据的时间没有统一的间隔,例如打印mod._index
的结果是
DatetimeIndex(['2016-01-01', '2016-01-08', '2016-01-15', '2016-01-22',
'2016-01-30'],
dtype='datetime64[ns]', n