题目:蒜头君的数轴
今天蒜头君拿到了一个数轴,上边有 nnn 个点,但是蒜头君嫌这根数轴不够优美,想要通过加一些点让它变优美,所谓优美是指考虑相邻两个点的距离,最多只有一对点的距离与其它的不同。
蒜头君想知道,他最少需要加多少个点使这个数轴变优美。
输入格式
输入第一行为一个整数 n(1≤n≤105)n(1 \leq n \leq 10^5)n(1≤n≤105),表示数轴上的点数。
第二行为 nnn 个不重复的整数 x1,x2,…,xn(−109≤xi≤109)x_1,x_2,…,x_n(-10^9 \leq x_i \leq 10^9)x1,x2,…,xn(−109≤xi≤109),表示这些点的坐标,点坐标乱序排列。
输出格式
输出一行,为一个整数,表示蒜头君最少需要加多少个点使这个数轴变优美。
样例输入
4
1 3 7 15
样例输出
1
题解:
本题目用正反gcd算法拼凑出一个数组去除任意一个元素后,剩余所有元素的最大公因数。
因一次gcd算法的时间复杂度为O(logn)。所以正反gcd算法的时间复杂度为O(nlogn)。
原理:
已知,数组a的第1-i个元素的最大公因数为f[i],数组a的第j-n个元素的最大公因数为g[j],则数组a的第1-i和第j-n这些元素的整体的最大公因数为gcd(f[i],g[j])。
源码如下所示:
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 100010;
int a[maxn];
int b[maxn];
int f[maxn] = {0};
int g[maxn] = {0};
int n;
int gcd(int x,int y){
return y == 0 ? x:gcd(y,x%y);
}
int main(){
cin >> n;
for(int i = 0;i<n;i++){
cin >> a[i];
a[i] += 1e9+1;
}
sort(a,a+n);
for(int i = 1;i<n;i++){
b[i] = a[i]-a[i-1];
}
int sum = a[n-1]-a[0];
for(int i = 1;i<n;i++){
f[i] = gcd(b[i],f[i-1]);
}
for(int i = n-1;i>0;i--){
g[i] = gcd(b[i],g[i+1]);
}
int ans = 1e9;
for(int i = 1;i<n;i++){
ans = min(ans,(sum-b[i])/gcd(f[i-1],g[i+1])-(n-2));
}
cout << ans << endl;
return 0;
}