蒜头君的数轴:正反gcd

题目:蒜头君的数轴
今天蒜头君拿到了一个数轴,上边有 nnn 个点,但是蒜头君嫌这根数轴不够优美,想要通过加一些点让它变优美,所谓优美是指考虑相邻两个点的距离,最多只有一对点的距离与其它的不同。

蒜头君想知道,他最少需要加多少个点使这个数轴变优美。
输入格式

输入第一行为一个整数 n(1≤n≤105)n(1 \leq n \leq 10^5)n(1≤n≤105),表示数轴上的点数。

第二行为 nnn 个不重复的整数 x1,x2,…,xn(−109≤xi≤109)x_1,x_2,…,x_n(-10^9 \leq x_i \leq 10^9)x1​,x2​,…,xn​(−109≤xi​≤109),表示这些点的坐标,点坐标乱序排列。
输出格式

输出一行,为一个整数,表示蒜头君最少需要加多少个点使这个数轴变优美。

样例输入
4
1 3 7 15
样例输出
1

题解:
本题目用正反gcd算法拼凑出一个数组去除任意一个元素后,剩余所有元素的最大公因数。
因一次gcd算法的时间复杂度为O(logn)。所以正反gcd算法的时间复杂度为O(nlogn)。
原理:
已知,数组a的第1-i个元素的最大公因数为f[i],数组a的第j-n个元素的最大公因数为g[j],则数组a的第1-i和第j-n这些元素的整体的最大公因数为gcd(f[i],g[j])。

源码如下所示:

#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 100010;
int a[maxn];
int b[maxn];
int f[maxn] = {0};
int g[maxn] = {0};
int n;

int gcd(int x,int y){
	return y == 0 ? x:gcd(y,x%y);
}

int main(){
	cin >> n;
	for(int i = 0;i<n;i++){
		cin >> a[i];
		a[i] += 1e9+1;
	}
	sort(a,a+n);
	for(int i = 1;i<n;i++){
		b[i] = a[i]-a[i-1];
	}
	int sum = a[n-1]-a[0];
	for(int i = 1;i<n;i++){
		f[i] = gcd(b[i],f[i-1]);
	}
	for(int i = n-1;i>0;i--){
		g[i] = gcd(b[i],g[i+1]);
	}
	int ans = 1e9;
	for(int i = 1;i<n;i++){
		ans = min(ans,(sum-b[i])/gcd(f[i-1],g[i+1])-(n-2));
	}
	cout << ans << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值