BSGS

本文深入讲解了BSGS算法,即BabyStepGiantStep算法,一种用于解决离散对数问题的有效算法。通过设定参数m为sqrt(p),算法能在O(sqrt(p))的时间复杂度内找到满足y^x≡n(modp)的最小x。代码示例展示了如何通过同步迭代避免溢出,无需使用快速幂算法。
摘要由CSDN通过智能技术生成

BSGS算法,即Baby Step Giant Step算法,也称作大步小步算法。
给定一个质数 p,以及一个整数 b,一个整数 n,现在要求你计算一个最小的 x,满足 y ^x ≡ n(modp)。
思路 :设 x = am-b, 那么原式可化为 : y ^(am)≡ n * y ^b(modp) 。
那么 0 <= b <= m-1 , 0 <= a <= m+1 。复杂度为 max(m,p/m), 所以当 m = sqrt( p ) 时复杂度最低。
所以我们令 m = sqrt( p ) 。

#include <iostream>
#include <algorithm>
#include <map>
#include <cmath>
using namespace std;

map<int,int> mp;

int main(){
	long long p,b,n;
	cin >> p >> b >> n;
	long long m = sqrt(p);
	long long x = n%p;
	b %= p; //防止溢出
	long long y = 1;
	for(long long i = 0;i<m;i++){
		mp[x] = i;
		x = (x*b)%p;
		y = (y*b)%p;
	}
	long long ans = 1;
	for(long long i = 0;i <= m+1;i++){
		if(mp.find(ans) != mp.end() ){
			cout << i*m-mp[ans] << endl;
			return 0;
		}
		ans = (ans*y)%p;
	}
	cout << "no solution" << endl;
	return 0;
}

代码中的 p, b ,n分别对应公式中的 p, y , n 。 而代码中的 y 即为 公式中的 y ^m 。
此处无需使用快速幂算法。同步迭代即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值