什么是HashMap(1)

转载自: 微信公众号:程序员小灰

 

 

 

 

 

 

众所周知,HashMap是一个用于存储Key-Value键值对的集合,每一个键值对也叫做Entry。这些个键值对(Entry)分散存储在一个数组当中,这个数组就是HashMap的主干。

 

HashMap数组每一个元素的初始值都是Null。

 

 

 

 

对于HashMap,我们最常使用的是两个方法:Get 和 Put

 

 

1.Put方法的原理

 

调用Put方法的时候发生了什么呢?

 

比如调用 hashMap.put("apple", 0) ,插入一个Key为“apple"的元素。这时候我们需要利用一个哈希函数来确定Entry的插入位置(index):

 

index =  Hash(“apple”)

 

假定最后计算出的index是2,那么结果如下:

 

 

 

 

但是,因为HashMap的长度是有限的,当插入的Entry越来越多时,再完美的Hash函数也难免会出现index冲突的情况。比如下面这样:

 

 

 

 

这时候该怎么办呢?我们可以利用链表来解决。

 

HashMap数组的每一个元素不止是一个Entry对象,也是一个链表的头节点。每一个Entry对象通过Next指针指向它的下一个Entry节点。当新来的Entry映射到冲突的数组位置时,只需要插入到对应的链表即可:

 

 

 

需要注意的是,新来的Entry节点插入链表时,使用的是“头插法”。至于为什么不插入链表尾部,后面会有解释。

 

注:1.8版本之前的采用头插法。

 

2.Get方法的原理

 

使用Get方法根据Key来查找Value的时候,发生了什么呢?

 

首先会把输入的Key做一次Hash映射,得到对应的index:

 

index =  Hash(“apple”)

 

由于刚才所说的Hash冲突,同一个位置有可能匹配到多个Entry,这时候就需要顺着对应链表的头节点,一个一个向下来查找。假设我们要查找的Key是“apple”:

 

 

 

第一步,我们查看的是头节点Entry6,Entry6的Key是banana,显然不是我们要找的结果。

 

第二步,我们查看的是Next节点Entry1,Entry1的Key是apple,正是我们要找的结果。

 

之所以把Entry6放在头节点,是因为HashMap的发明者认为,后插入的Entry被查找的可能性更大

 

注:这个认为在1.8版本后被否定。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

————————————

 

 

 

 

 

 

 

 

 

 

 

 

之前说过,从Key映射到HashMap数组的对应位置,会用到一个Hash函数:

 

index =  Hash(“apple”)

 

如何实现一个尽量均匀分布的Hash函数呢?我们通过利用Key的HashCode值来做某种运算。

 

 

 

index =  HashCode(Key) % Length ?

 

 

 

 

如何进行位运算呢?有如下的公式(Length是HashMap的长度):

 

index =  HashCode(Key) &  (Length - 1) 

 

下面我们以值为“book”的Key来演示整个过程:

 

1.计算book的hashcode,结果为十进制的3029737,二进制的101110001110101110 1001。

 

2.假定HashMap长度是默认的16,计算Length-1的结果为十进制的15,二进制的1111。

 

3.把以上两个结果做与运算,101110001110101110 1001 & 1111 = 1001,十进制是9,所以 index=9。

 

可以说,Hash算法最终得到的index结果,完全取决于Key的Hashcode值的最后几位。

 

 

 

 

 

 

 

假设HashMap的长度是10,重复刚才的运算步骤:

 

 

 

 

单独看这个结果,表面上并没有问题。我们再来尝试一个新的HashCode  101110001110101110 1011 

 

 

 

 

让我们再换一个HashCode 101110001110101110 1111 试试  :

 

 

 

是的,虽然HashCode的倒数第二第三位从0变成了1,但是运算的结果都是1001。也就是说,当HashMap长度为10的时候,有些index结果的出现几率会更大,而有些index结果永远不会出现(比如0111)!

 

这样,显然不符合Hash算法均匀分布的原则。

 

反观长度16或者其他2的幂,Length-1的值是所有二进制位全为1,这种情况下,index的结果等同于HashCode后几位的值。只要输入的HashCode本身分布均匀,Hash算法的结果就是均匀的。

 

 

 

 

 

注:

     在这里总结下HashMap在1.7和1.8之间的变化:

  • 1.7采用数组+单链表,1.8在单链表超过一定长度后改成红黑树存储
  • 1.7扩容时需要重新计算哈希值和索引位置,1.8并不重新计算哈希值,巧妙地采用和扩容后容量进行&操作来计算新的索引位置。
  • 1.7插入元素到单链表中采用头插入法,1.8采用的是尾插入法。

 

采用位运算:

  • 比模运算效率高
  • 符合Hash算法均匀分布的原则,能使key均匀分布,避免出现永远不会被占用的桶

 

1.7版本与1.8版本区别还是挺大的,前面有1.7版本的源码解析,这次以及后面的文章再结合1.8对HashMap做个汇总。

 

每天努力一点,每天都在进步。

©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页