pytorch搭建神经网络流程


前言

文章中,我们将使用PyTorch从头开始实现一个简单的神经网络。很多人捧着各种pytorch指南一边看一边敲代码,但是合上书好像什么都不记得。


神经网络搭建

如果你想做一个网络,需要先定义一个Class,继承 nn.Module(这个是必须的,所以先import torch.nn as nn,nn是一个工具箱,很好用),我们把class的名字就叫成Net.

class Net (nn.Module):

这个Class里面主要写两个函数,一个是初始化的__init__函数,另一个是forward函数。我们随便搭一个,如下:

def __init__(self):
        super().__init__()
        self.conv1=nn.Conv2d(1,6,5)
        self.conv2=nn.Conv2d(6,16,5)
 
    def forward(self, x):
        x=F.max_pool2d(F.relu(self.conv1(x)),2)
        x=F.max_pool2d(F.relu(self.conv2(x)),2)
        return x

__init__里面就是定义卷积层,当然先得super()一下,给父类nn.Module初始化一下。

(Python的基础知识)在这个里面主要就是定义卷积层的,比如第一层,我们叫它conv1,把它定义成输入1通道,输出6通道,卷积核5*5的的一个卷积层。conv2同理。

神经网络“深度学习”其实主要就是学习卷积核里的参数,像别的不需要学习和改变的,就不用放进去。

比如激活函数relu(),你非要放进去也行,再给它起个名字叫myrelu,也是可以的。forward里面就是真正执行数据的流动。

比如上面的代码,输入的x先经过定义的conv1(这个名字是你自己起的),再经过激活函数F.relu()(这个就不是自己起的名字了,最开始应该先import torch.nn.functional as F,F.relu()是官方提供的函数。

当然如果你在__init__里面把relu定义成了我上面说的myrelu,那你这里直接第一句话就成了x=F.max_pool2d(myrelu(self.conv1(x)),2)。

下一步的F.max_pool2d池化也是一样的,不多废话了。在一系列流动以后,最后把x返回到外面去。

这个Net的Class定义主要要注意两点。

第一:是注意前后输出通道和输入通道的一致性。不能第一个卷积层输出4通道第二个输入6通道,这样就会报错。

第二:它和我们常规的python的class还有一些不同,发现了没有?我们该怎么用这个Net呢?

先定义一个Net的实例(毕竟Net只是一个类不能直接传参数,output=Net(input)当然不行)

net=Net()

这样我们就可以往里传x了,假设你已经有一个要往神经网络的输入的数据“input"(这个input应该定义成tensor类型)在传入的时候,是:

output=net(input)

看之前的定义:

def __init__(self):
   ……
 
def forward(self, x):
   ……

有点奇怪。好像常规python一般向class里面传入一个数据x,在class的定义里面,应该是把这个x作为形参传入__init__函数里的,而在上面的定义中,x作为形参是传入forward函数里面的。

其实也不矛盾,因为你定义net的时候,是net=Net(),并没有往里面传入参数。如果你想初始化的时候按需传入,就把需要的传入进去。

只是x是神经网络的输入,但是并非是初始化需要的,初始化一个网络,必须要有输入数据吗?

未必吧。只是在传入网络的时候,会自动认为你这个x是喂给forward里面的。也就是说,先定义一个网络的实例net=Net(), 这时调用output=net(input), 可以理解为等同于调用output=net.forward(input), 这两者可以理解为一码事。

在网络定义好以后,就涉及到传入参数,算误差,反向传播,更新权重…确实很容易记不住这些东西的格式和顺序。

传入的方式上面已经介绍了,相当于一次正向传播,把一路上各层的输入x都算出来了。

想让神经网络输出的output跟你期望的ground truth差不多,那就是不断减小二者间的差异,这个差异是你自己定义的,也就是目标函数(object function)或者就是损失函数。

如果损失函数loss趋近于0,那么自然就达到目的了。

损失函数loss基本上没法达到0,但是希望能让它达到最小值,那么就是希望它能按照梯度进行下降。

只是你的输入是由你来决定的,那神经网络能学习和决定什么呢?

自然它只能决定每一层卷积层的权重。所以神经网络只能不停修改权重,比如y=wx+b,x是你给的,它只能改变w,b让最后的输出y尽可能接近你希望的y值,这样损失loss就越来越小。

如果loss对于输入x的偏导数接近0了,不就意味着到达了一个极值吗?

而l在你的loss计算方式已经给定的情况下,loss对于输入x的偏导数的减小,其实只能通过更新参数卷积层参数W来实现(别的它决定不了啊,都是你输入和提供的)。

所以,通过下述方式实现对W的更新:

【1】 先算loss对于输入x的偏导,(当然网络好几层,这个x指的是每一层的输入,而不是最开始的输入input)

【2】 对【1】的结果再乘以一个步长(这样就相当于是得到一个对参数W的修改量)

【3】 用W减掉这个修改量,完成一次对参数W的修改。

这个过程你可以手动实现,但是大规模神经网络怎么手动实现?那是不可能的事情。所以我们要利用框架pytorch和工具箱torch.nn。

所以要定义损失函数,以MSEloss为例:

compute_loss=nn.MSELoss()

明显它也是个类,不能直接传入输入数据,所以直接loss=nn.MSEloss(target,output)是不对的。需要把这个函数赋一个实例,叫成compute_loss。

之后就可以把你的神经网络的输出,和标准答案target传入进去:

loss=compute_loss(target,output)

算出loss,下一步就是反向传播:

loss.backward()

这一步其实就是把【1】给算完了,得到对参数W一步的更新量,算是一次反向传播。

这里就注意了,loss.backward()是啥玩意?如果是自己的定义的loss(比如你就自己定义了个def loss(x,y):return y-x )这样肯定直接backward会出错。所以应当用nn里面提供的函数。

当然搞深度学习不可能只用官方提供的loss函数,所以如果你要想用自己的loss函数。

必须也把loss定义成上面Net的样子

class Loss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, y, x):
        return torch.mean(torch.pow(y-x),2)

在反向传播之后,第【2】和第【3】怎么实现?就是通过优化器来实现。让优化器来自动实现对网络权重W的更新。

所以在Net定义完以后,需要写一个优化器的定义(选SGD方式为例):

from torch import optim
optimizer=optim.SGD(net.parameters(),lr=0.001,momentum=0.9)

同样,优化器也是一个类,先定义一个实例optimizer,然后之后会用。

注意在optimizer定义的时候,需要给SGD传入了net的参数parameters,这样之后优化器就掌握了对网络参数的控制权,就能够对它进行修改了。

传入的时候把学习率lr也传入了。

在每次迭代之前,先把optimizer里存的梯度清零一下(因为W已经更新过的“更新量”下一次就不需要用了)

optimizer.zero_grad()

在loss.backward()反向传播以后,更新参数:

optimizer.step()

总结

所以我们的顺序是:

1.先定义网络:写网络Net的Class,声明网络的实例net=Net(),

2.定义优化器

optimizer=optim.xxx(net.parameters(),lr=xxx),

3.再定义损失函数(自己写class或者直接用官方的,compute_loss=nn.MSELoss()或者其他。

4.在定义完之后,开始一次一次的循环:

①先清空优化器里的梯度信息,optimizer.zero_grad();

②再将input传入,output=net(input) ,正向传播

③算损失,loss=compute_loss(target,output) ##这里target就是参考标准值GT,需要自己准备,和之前传入的input一一对应

④误差反向传播,loss.backward()

⑤更新参数,optimizer.step()

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim

class Net(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 6, 2)
        self.conv2 = nn.Conv2d(6, 16, 2)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), 2)
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        return x

class Loss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, y, x):
        return torch.mean(torch.pow(y-x),2)

net = Net()
x = torch.rand(10,10)
target = torch.rand(16,1,1)

optimizer=optim.SGD(net.parameters(),lr=0.001,momentum=0.9)

compute_loss = nn.MSELoss()
loss_manuel=Loss()

num_epochs=3

for epoch in range(num_epochs):
    optimizer.zero_grad()
    output = net(x.unsqueeze(0))
    loss = compute_loss(target, output)
    loss.backward()
    optimizer.step()

    print(f'epoch {epoch+1},loss {loss:f}')
epoch 1,loss 0.250180
epoch 2,loss 0.249753
epoch 3,loss 0.248944
epoch 1,loss 0.336329
epoch 11,loss 0.326368
epoch 21,loss 0.308185
epoch 31,loss 0.288542
epoch 41,loss 0.269619
epoch 51,loss 0.251989
epoch 61,loss 0.235711
epoch 71,loss 0.220774
epoch 81,loss 0.207118
epoch 91,loss 0.194740

这样就实现了一个基本的神经网络。大部分神经网络的训练都可以简化为这个过程,无非是传入的内容复杂,网络定义复杂,损失函数复杂,等等等等。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值