松弛(图论术语)

扒自百度百科

单源最短路径算法中使用了 松弛(relaxation)操作。对于每个顶点v∈V, 都设置一个属性d[v],用来描述从源点s到v的最短路径上权值的上界,称为 最短路径估计(shortest-path estimate)π[v]代表S到v的当前最短路径中v点之前的一个点的编号,我们用下面的 Θ(V)时间的过程来对最短路径估计和前趋进行初始化。
INITIALIZE-SINGLE-SOURCE(G,s)
1   for each vertex v∈V[G]
2   do d[v]←∞
3    π[v]←NIL
4    d[s]←0
经过初始化以后,对所有v∈V,π[v]=NIL,对v∈V-{s},有d[s]=0以及d[v]=∞。
在松弛一条边(u,v)的过程中,要测试是否可以通过u,对迄今找到的v的最短路径进行改进;如果可以改进的话,则更新d[v]和π[v]。一次松弛操作可以减小最短路径估计的值d[v],并更新v的前趋域π[v](S到v的当前最短路径中v点之前的一个点的编号)。下面的伪代码对边(u,v)进行了一步松弛操作。
RELAX(u, v, w)
1   if(d[v]>d[u]+w(u,v))
2   then d[v]←d[u]+w(u,v)
3    π[v]←u
每个单源最短路径算法中都会调用INITIALIZE-SINGLE-SOURCE,然后重复对边进行松弛的过程。另外,松弛是改变最短路径和前趋的唯一方式。各个单源最短路径算法间区别在于对每条边进行松弛操作的次数,以及对边执行松弛操作的次序有所不同。 在Dijkstra算法以及关于有向无回路图的最短路径算法中,对每条边执行一次松弛操作。在Bellman-Ford算法中,每条边要执行多次松弛操作。
顺带提一句,松弛操作的不等式与 差分约束系统有着密不可分的关联。
//(伪代码风格有《算导》的味道)

转载于:https://www.cnblogs.com/XqwKen/p/4564315.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值