- 博客(318)
- 资源 (6)
- 收藏
- 关注
转载 MOT
项目:『足球事件检索』。事件是一个 high-level 概念,需要基于一些 low-level 信息来做。后者主要就是一些图像处理的东西了。两个 level 之间,会有一些中间层的信息,比如足球的走向。根据师兄的建议,可以考虑对足球场上的运动员进行多目标跟踪,在跟踪轨迹的基础上抽取一些有用的信息。一来这个项目可能用到 MOT 作为中间的一个处理环节,另一方面有发论文的压力,MOT 或许是
2015-03-21 13:55:41 1135 1
转载 在图论中,网络流(Network Flow)
在图论中,网络流(Network Flow)是指在一个每条边都有容量(Capacity)的有向图分配流,使一条边的流量不会超过它的容量。(边有附带容量的图称为网络。)一道流必须符合一个结点的进出的流量相同的限制,除非这是一个源点(Source)──有较多向外的流,或是一个汇点(Sink)──有较多向内的流。一个网络可以用来模拟道路系统的交通量、管中的液体、电路中的电流或类似一些东西在一个结点(No
2015-03-11 20:26:55 6112
转载 1聚类分析介绍
1.1基本概念聚类就是一种寻找数据之间一种内在结构的技术。聚类把全体数据实例组织成一些相似组,而这些相似组被称作聚类。处于相同聚类中的数据实例彼此相同,处于不同聚类中的实例彼此不同。聚类技术通常又被称为无监督学习,因为与监督学习不同,在聚类中那些表示数据类别的分类或者分组信息是没有的。通过上述表述,我们可以把聚类定义为将数据集中在某些方面具有相似性的数据成员进行分类组织的过程。因此
2015-09-24 15:36:39 2258
转载 STL
STL = Standard Template Library,标准模板库,惠普实验室开发的一系列软件的统称。它是由Alexander Stepanov、Meng Lee和David R Musser在惠普实验室工作时所开发出来的。这可能是一个历史上最令人兴奋的工具的最无聊的术语。从根本上说,STL是一些“容器”的集合,这些“容器”有list,vector,set,map等,STL也是算法和其
2015-08-27 11:22:51 886
原创 linux 学习
mkdir 新建文件夹 mkdir testcd 切换目录(进入新的文件夹)rm -r web1 删除文件夹 加'-r' 删除文件不加‘-r’reset 清屏ls -l 详细信息 (中间空格 表示详细信息)touch text.txt 新建文本文件cd ../返回上一目录
2015-07-11 12:13:22 760
转载 C/S与B/S系统测试的不同点和相同点
A回答.按系统测试的分类1.功能性测试C/S:服务器和客户端均会分担一部分的事务处理功能,应分开测试。B/S:服务器负责主要的事务逻辑,所以应将重点放在服务器上。2.安全测试C/S:可以使用多种网络协议,甚至可以自定义协议,从这个角度来看,C/S的安全性是有保障的。B/S:使用http协议,虽然最新的https协议在安全性方面有所提升,但还是弱于C/S。3.配置测试
2015-07-04 22:20:34 2704
转载 时空上下文视觉跟踪(STC)算法的解读与代码复现
本博文主要是关注一篇视觉跟踪的论文。这篇论文是Kaihua Zhang等人今年投稿到一个会议的文章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码。但为了让我们先睹为快,作者把论文放在arxiv这个网站上面供大家下载了。对于里面所描述的神奇的效果,大家都跃跃欲试,也有人将其复现了。我这里也花了一天的时间去复现了单尺度的C++版本,主要是基于OpenCV。多尺度的有点复杂,这个后面再
2015-06-14 11:17:09 1101
转载 c语言中static 用法
static在c里面可以用来修饰变量,也可以用来修饰函数。先看用来修饰变量的时候。变量在c里面可分为存在全局数据区、栈和堆里。其实我们平时所说的堆栈是栈而不是堆,不要弄混。int a ;int main(){ int b ; int c* = (int *)malloc(sizeof(int));}a是全局变量,b是栈变量,c是堆变量。static
2015-05-31 21:55:21 528
转载 使用距离变换的分水岭分割
针对分割,与分水岭变换相配合的常用工具是距离变换。二值图像的距离变换是相对简单的概念:是指从每个像素到最接近零值的像素的距离。例如,图10-25(a)显示了一个小的二值图像矩阵。图10-25(b)显示了相应的距离变换。注意,每个值为1的像素的距离变换为0,因为最靠近的非0像素是它本身。距离变换可以用工具箱函数bwdist来计算,调用语法为:D = bwdist(f)
2015-05-29 14:07:53 5653
转载 Matlab中一个很有用的函数:regionprops
在matlab图像处理中太有用了,regionprops用来度量图像区域属性的函数。函数:regionprops。顾名思义:它的用途是get the properties of region,即用来度量图像区域属性的函数。语法 STATS = regionprops(L,properties) %bw=rgb2gray(bw);L必须来自二维图像(如灰度图像
2015-05-19 21:22:30 1025
转载 前向算法(Forward Algorithm)
1.穷举搜索( Exhaustive search for solution) 给定隐马尔科夫模型,也就是在模型参数(, A, B)已知的情况下,我们想找到观察序列的概率。还是考虑天气这个例子,我们有一个用来描述天气及与它密切相关的海藻湿度状态的隐马尔科夫模型(HMM), 另外我们还有一个海藻的湿度状态观察序列。假设连续3天海藻湿度的观察结果是(干燥、湿润、湿透)——而这三天每一天都可能
2015-05-13 09:54:08 4958
转载 维特比算法一点个人理解
维特比算法要解决得是隐含马尔可夫模型计算复杂度过高而提出来得一个算法,从可见序列(y1,y2..yn)推导出最大可能性的隐含序列(x1,x2..xn)的这么一个算法,推导中有这么两个问题,1.从yi到xi得概率,即 f(xi|yi), 这个可以通过贝叶斯公式来计算得到。 2. 每步推导存在多种状态得可能性,即 xi到xi+1 的可能性为ni * ni+1 种。这个问题就比较像图论中最短路径
2015-05-13 09:43:20 907
转载 隐马尔科夫-维特比算法
继上篇贝叶斯(http://www.cnblogs.com/zhiranok/archive/2012/09/22/native_bayes.html)后,一直想完成隐马尔科夫这篇,一是一直没有时间完成python的示例实现代码,二是想找一个区别于天气的隐马尔科夫例子。区别于贝叶斯,隐马尔科夫模型是基于时序的概率模型,本文只关注于一阶隐马尔科夫模型,即某一时刻的状态值只跟上一时刻的状态值有关。该模
2015-05-13 09:42:02 799
转载 维特比算法(Viterbi Algorithm)
寻找最可能的隐藏状态序列 (Finding most probable sequence of hidden states)对于一个特殊的隐马尔科夫模型(HMM)及一个相应的观察序列,我们常常希望能找到生成此序列最可能的隐藏状态序列。之前的那个问题变转,http://blog.csdn.net/jeiwt/article/details/8076019 假设
2015-05-13 09:41:38 1024
转载 高斯模型
高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对
2015-05-12 10:24:14 2050
转载 第一篇SCI (IF>5),心得交流(写的字数很多),希望多多交流!
虽然,论文不是科研工作的全部,甚至对于一些横向课题而言,不是最重要的。但论文确实是科研工作最系统和全面,也最凝练的表达,集中表达了科研工作者的思路、方法和对某一领域的研究进展,以及对成果的梳理和分析,甚至有可能蕴含着对未来的发展指引。一个很好的例子是:1899-1904年间,居里夫妇共发表了32篇学术论文,集中反映了他们在开拓放射学这个新的科学领域的贡献。另一个例子关乎华裔:1940-19
2015-05-12 09:36:14 3633
转载 百余篇SCI文章的一字经验----短
从第一篇SCI(Molecular and cellular biology 6.188)到百篇SCI发表在数十个SCI杂志(包括Pediatric neurology 1.513; Journal ofbiological chemistry(JBC) 5.328;J clinical endocrinologyand metabolism :6.495;Lancet:33.633;Blood:
2015-05-12 09:27:17 1395
转载 前景检测算法 (GMM)
本文通过opencv来实现一种前景检测算法——GMM,算法采用的思想来自论文[1][2][4]。在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,则认为是背景,否则认为是前景。由于整个过程GMM模型在不断更新学习中,所以对动态背景有一定的鲁棒性。最后通过
2015-05-11 19:48:01 3586
转载 运动检测(前景检测)之(二)混合高斯模型GMM
因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些:帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(Motion Competition)、运动模版(运动历史图像)、时间熵……等等。如果加上他们的改进版,那就是很大的一个家族了。
2015-05-11 19:43:23 1667
转载 复杂场景下的多目标跟踪 --心得
多目标跟踪一直都是cv领域一个让人蛋疼的问题。摸索了这么久,有些心得,可能有所欠缺,请多指教有两种方案 你可以用背景建模,先分出前景运动目标,但是这样分出来的目标会存在粘连,对于多人勾肩搭背的走或者前后的车辆行驶来说,简直是噩梦,怎么办哪?有方法!! 对于比较轻度的粘连,可以用用极度腐蚀,膨胀,这种简单的预处理的方法,还有就是药结合摄像头,在3维的空间来分割粘连,你想啊,现实中行
2015-05-11 19:36:35 989
转载 隐性马尔可夫链
我是学理科出身的程序员,一直做web,复杂的算法基本上很少用到。最近做了一个自然语言处理相关的项目,我把我的一些理解和大家分享一下。 1. 首先来说一下马尔科夫链。 一个事件序列发生的概率可以用下面的概率论里面的乘法公式展开 P(w1,w2,…wn) = P(w1)P(w2|w1)P(w3| w1 w2)…P(wn|w1 w2…wn-1)
2015-05-11 19:27:36 1457
转载 高斯混合模型学习笔记
l 设离散型随机变量X的分布律为则称 为X的数学期望或均值l 设连续型随机变量X的概率密度函数(PDF)为其数学期望定义为l 称为随机变量X的方差,称为X的标准差l 正态分布 ~概率密度函数l 设(X, Y)为二维随机变量,若存在,则称其为随机变量X和Y的协方差,记为l 多维高斯(正
2015-05-11 15:26:55 606
转载 高斯混合模型算法:
下面介绍一下几种典型的机器算法首先第一种是高斯混合模型算法:高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种。(1)单高斯模型:为简单起见,阈值t的选取一般靠经验值来设定。通常意义下,我们一般取t=0.7-0.75之间。二维情况如下所示:(2)混合高斯模型: 对于(b)图所示的
2015-05-11 15:20:32 672
转载 高斯混合模型GMM
本文就高斯混合模型(GMM,Gaussian Mixture Model)参数如何确立这个问题,详细讲解期望最大化(EM,Expectation Maximization)算法的实施过程。单高斯分布模型GSM多维变量X服从高斯分布时,它的概率密度函数PDF为:x是维度为d的列向量,u是模型期望,Σ是模型方差。在实际应用中u通常用样本均值来代替,Σ通常用样本方差来代替
2015-05-11 15:19:35 765
转载 计算机顶级会议Rankings && 英文投稿的一点经验
1. 首先一定要注意杂志的发表范围, 超出范围的千万别投,要不就是浪费时间;另外,每个杂志都有他们的具体格式要求,一定要按照他们的要求把论文写好,免得浪费时间,前些时候,我的一个同事向一个著名的英文杂志投稿,由于格式问题,人家过两个星期就退回来了,而且说了很多难听的话,说投稿前首先就应该看清楚他们的格式要求;2. 论文写作一定要言简意赅,特别是摘要,引言和结论部分,特别是摘要和结论不能重复,发
2015-05-11 14:14:42 256354
转载 计算机视觉方面的三大国际会议是ICCV, CVPR和ECCV,我统称之为ICE。
ICCV的全称是International Comference on Computer Vision(ICCV两年一次,与ECCV正好错开,是公认的三个会议中级别最高的。它的举办地方会在世界各地选。iccv上的文章看起来一般都比较好懂。CVPR的全称是Internaltional Conference on Computer Vision and Pattern Recogintion。
2015-05-11 09:02:20 3982
转载 从CVPR,到ICCV,再到ECCV
记得大四我刚进实验室做毕设的时候,看到一篇相关的论文,这篇论文发表在CVPR上,当时我在想CVPR是个什么东西,后来师兄告诉我这是我们计算机视觉领域一个顶级国际会议的名字,它和ICCV,ECCV并称为视觉三大。从此我潜意识里一直觉得这些都是遥不可及的。转眼两年过去了,来到研二上学期。在过去的1年多时间里,我看了很多文章,也对其中一些有比较深的理解,对搞研究做学术更有了进一步的认识并且也将之
2015-05-07 21:12:25 18985 5
转载 Nature 自然
出版:英国MacMillan.Ltd创刊:1869年刊期:周刊定位:兼顾学术期刊和科学杂志,即科学论文具较高的新闻性和广泛的读者群。论文不仅要求具有“突出的科学贡献”,还必须“令交叉学科的读者感兴趣”。自然出版集团出版的Nature系列刊物有三类:(NaturePublishingGroup)※综述性期刊,对重要的研究工作进行综述评论;※ 研
2015-05-07 10:22:30 728
转载 IEEE和SCI等的通俗简介
电子类学生大都知道IEEE, 这个IEEE就像一个大的BBS论坛,而这个协会下面有很多杂志,比如图像处理,信号处理,微波技术等。这些杂志就是论坛下的分版面。每个版面有版主(主编),版副(副主编)等职务。 大学里的教授负责组织人力在IEEE灌水。教授灌的水被别的论坛或版面转载或引用。这就叫坑。大牛教授挖大坑,小牛教授挖小坑。同学们就在这些大坑,小坑中灌水。水越多的坑,坑就越牛,从而挖坑的教授
2015-05-07 09:56:57 741
转载 认识SCI、EI、ISTP、SSCI、INSPEC、SCIE、IEEE、CSCD、CSSCI
SCI(科学引文索引 )、EI(工程索引 )、ISTP(科技会议录索引 ) 是世界著名的三大科技文献检索系统,是国际公认的进行科学统计与科学评价的主要检索工具,其中以SCI最为重要。《科学引文索引》(Science Citation Index, SCI)是由美国科学信息研究所(ISI)1961年创办出版的引文数据库,其覆盖生命科学、临床医学、物理化学、农业、生物、兽医学、工程技术
2015-05-07 09:51:27 9751
转载 Matlab画图教程
1、MATLAB简介:MATLAB语言丰富的图形表现方法,使得数学计算结果可以方便地、多样性地实现了可视化,这是其它语言所不能比拟的。2、MATLAB的绘图功能:(1)单窗口单曲线绘图x=[0,0.58,0.84,1,0.91,0.6,0.14]plot (x)(2)单窗口多曲线绘图t=0:pi/100:2*pi;y=sin(t);y1=sin(t+0.25);y2
2015-05-05 22:00:49 10208
转载 MATLAB图像生成函数Plot()总结
一、基本形式(1)>> y=[0 0.58 0.70 0.95 0.83 0.25];>> plot(y)生成的图形是以序号为横坐标、数组y的数值为纵坐标画出的折线。 (2)>> x=linspace(0,2*pi,30); % 生成一组线性等距的数值>> y=sin(x);>> plot(x,y)生成的图形是上30个点连成的光滑的正弦曲线。二、多重线(1)
2015-05-05 21:59:36 10855
转载 Matlab绘图
强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。本章
2015-05-05 21:58:43 2254
转载 绘制曲线设置颜色和样式
MATLAB具有强大的绘图功能,所以受到很多数据处理人士的喜欢,今天我们就来学习一下如何绘制二维图,并设置曲线颜色和样式,下面是具体的方法:首先我们输入5个变量,如图所示:这几个变量构成了4个函数最简单呐的绘图方法是使用plot(y1)的方法,如图所示我们还可以设置曲线的颜色和样式:假如我们要回执一条红色的曲线,我们只需要使用英文单词red的首写字母
2015-05-05 21:55:31 3578
转载 玫瑰图的画法大全
使用rose函数可以绘制玫瑰图,rose函数使用的基本方法是rose(t),其中t是随机数,绘制出来的图形为线性。学习rose函数我们还赠送给大家一个方法如何设置曲线的宽度。好吧,下面是具体的方法步骤:首先我们来建立一个随机数:在MATLAB命令窗口输入x=rand(1000,1)*100;t=x*pi/180;这样设置x为正态分布随机数,设置函数关系为t。我们先来绘制
2015-05-05 21:54:50 9177
转载 绘制直方图的方法大全
直方图也被称为频数直方图,它用来显示数据集的分布情况。在MATLAB中绘制直方图的函数是hist,用法是hist(y,x),表示以向量x的各个元素为统计范围,绘制y的分布情况。具体的用法会非常灵活,我们看下面的教程:首先我们输入两个变量,x=randn(500,1);y=randn(500,3);该语句定义x,y为正态分布随机数。记住该语句将非常有用。接着我们先绘制一个
2015-05-05 21:51:59 5052
转载 绘图之使用工作空间直接绘图
在MATLAB中,有一种较为简单的方法就是使用工作空间进行绘图,方法大概是在工作空间选中变量,然后鼠标点击绘图图标即可绘图,绘图非常方便快捷,所以很多人会使用该方法来快速查看数据,下面是我们绘图的具体步骤:首先我们打开MATLAB,在命令窗口中输入两个变量,如图所示,我们看到这两个变量就构成了以正弦函数在工作空间中选中这两个变量,让这两个变量都呈现蓝色,使用ctrl键可
2015-05-05 21:51:07 963
转载 三维曲线图的绘制方法大全
上一篇文章我们将了如何使用plot函数绘制二维空间的曲线图,以及如何设置曲线图的样式,这一章我们要介绍一下使用plot3绘制三维空间的曲线,设置曲线样式你们就参考上一篇文章,两者是一样的,这一章重点将三维空间曲线图的特点。首先我们介绍一下plot3的基本使用方法:plot3(x1,y1,option1,x2,y2,option2...),其中参数x1、x2、y1、y2都是变量,op
2015-05-05 21:50:08 16434
转载 视频跟踪
从去年开始,我的研究方向就一直是视频跟踪,这也是我们实验室的传统课题。从一无所知,没有任何图像方面的基础,看论文被各种术语困住无法前行,一个基础一个基础的攻破,查阅了巨多的资料,看了十几篇论文,阅读、修改代码,反复研究,在几乎没有指导的情况下终于拨云见日、渐入佳境;理解了贝叶斯框架在视频跟踪中的应用,理解了粒子滤波、卡尔曼滤波、马尔可夫蒙特卡罗采样与视频跟踪的结合;看论文的速度也加快了。期
2015-04-15 13:18:25 828
转载 目标检测经典算法笔记
在计算机视觉领域,最基本也最经典的一个问题就是目标识别(Object Detection):给出一张图像,用detector检测出图像中特定的object(如人脸)。这方面的论文最经典的恐怕要数《Rapid Object Detection using a Boosted Cascade of Simple Features》这篇了,截止目前(2015.4.2)已经引用10834次。Matlab的
2015-04-15 13:14:54 7459
Pattern Recognition and Machine Learning Christopher M. Bishop (英文版)
2014-08-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人