从招聘网站招聘者的角度上,分析程序员工作能力的需求,利用python的requests,BeautifulSoup4和正则来爬取深圳58同城程序员的招聘信息,数据分析则以云词图展示,主要用jieba、worldcloud,pandas这几个包来生成云词图。
一、数据爬取分成四部分:
整理好网站的头部信息,保证请求时,可以正常获取网页信息
获得二级网址的网址列表,此处是对一级网址进行解析,寻找一级网址里面包含的各个招聘信息并生成对应的网址列表
对二级网址中的指定标签进行爬取
建立csv文件
二、云词图生成分成四部分:
创建文件和停用词组,以便后面的停用词判断
词频统计,用pandans进行统计
设置云词属性
生成词云
数据爬取
第一部分,获取头部信息,对于大多数网页,若想用requests这个包爬取其中的信息,在请求时务必加网页头部信息和关闭重定向!!获取头部信息这里给出两种办法,第一种是直接从网页代码获取,让头部信息变成字典样式
1 def headers_information(h): 2 lst=headers.split('\n') 3 m=[] 4 for i in lst: 5 key=i.split(':')[0] 6 value=i.split(':')[1] 7 m.append([str(key),value]) 8 return(dict(m))
第二种直接添加
1 h={"User-Agent" : "User-Agent:Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;"}, 2 r=requests.get(url, allow_redirects=False,headers=h)
第二部分,获得二级网址的网址列表,确定了一级网址以后,这里有个页码的问题,因为我们要爬取多页,所以用for循环遍历页码数,用BeautifulSoup对爬取而来的n个一级网址进行解析,
1 def url_analysis(u,s,h,n): 2 ''' 3 用于分析网页,最后得到一个含有二级网址的标签列表 4 u:起始网址 5 s:二级网址包含的特定字段 6 n:页码 7 h:头部信息 8 ''' 9 m=[] 10 for i in range(1,n+1): 11 r=requests.get(url=u+str(i)+'/',allow_redirects=False,headers=h) 12 soup=BeautifulSoup(r.text,'lxml') 13 r2=soup.find_all('a',href=re.compile(s)) 14 15 16 for j in r2: 17 r3=j.attrs['href'] 18 m.append(r3) 19 20 return(m)
第三部分,对二级网址中的指定标签进行爬取,这里爬取以下部分,另外注意一点,获取的有些二级网址对应的标签为空,此时会返回None,我们也要进行判断
1 def content(u,h): 2 ''' 3 爬取标签信息 4 u:二级网址 5 h:头部信息 6 ''' 7 r=requests.get(url=u,allow_redirects=False,headers=h) 8 soup=BeautifulSoup(r.text,'lxml') 9 t=soup.find('span',class_='pos_title') 10 name=soup.find('span',class_='pos_name') 11 number=soup.find('span',class_="item_condition pad_left_none") 12 stu=soup.find('span',class_="item_condition") 13 exprience=soup.find('span',class_="item_condition border_right_None") 14 discribe=soup.find('div',class_="posDes") 15 m=[t,',',name,',',number,',',stu,',',exprience,',',discribe,',','\n'] 16 if m[0]!=None: 17 return[m[0].text,',',m[2].text,',',m[4].text,',',m[6].text,',',m[8].text,',',m[10].text,',','\n'] 18 else: 19 return[None, ',', None, ',', None, ',', None, ',', None, ',', None, ',','\n']
第四部分,建立csv文件,注意,列表要是有None是写不进去会报错的,所以我们也要进行筛选
1 f=open(r'C:\Users\格格巫\Desktop\txt1.csv','w') 2 f.seek(0) 3 f.write('title,name,number,stu,exprience,discribe\n') 4 for i in url_analysis(web_u,web_s,h,n): 5 data=content(i,h) 6 if data[0]!=None: 7 f.writelines(data) 8 print(data) 9 else: 10 continue 11 f.close()
数据爬取代码链接:https://github.com/creating20/analysis/blob/master/temp9.py
生成云词图
这里主要用的两个库是jieba和wordcloud,jieba 是一个python实现的中文分词组件,它有三种模式,今天我们使用是它的普通模式,wordcloud是python制作云词图的库,在统计了词频的频数后,我们准备用云词图的形式展现,云词图中字体大的,说明统计得出的频数越高, 先把爬取下来的csv文件整理一下,把文件的汉字都去掉,留下招聘者对应聘者编程方面的要求
第一部分,创建文件和停用词组,进而判断关键词在不在停用词组中,若不在则记录下来,
1 import numpy as np 2 import pandas as pd 3 import jieba 4 import jieba.analyse 5 import codecs 6 import os 7 import wordcloud 8 from PIL import Image 9 import matplotlib.pyplot as plt 10 pd.set_option('max_colwidth',500) 11 path=os.getcwd()+'/chengxuyuan58.csv' 12 f=open(path,encoding='UTF-8') 13 data=pd.read_csv(f, header=0,encoding='utf-8',dtype=str).astype(str) 14 segments = [] 15 stopwords = [line.strip() for line in codecs.open('stoped.txt', 'r', 'utf-8').readlines()] 16 for index, row in data.iterrows(): 17 content = row[4] 18 words = jieba.cut(content) 19 splitedStr = '' 20 for word in words: 21 if word not in stopwords: 22 segments.append({'word':word, 'count':1}) 23 splitedStr += word + ' '
第二部分,词频统计,我们主要使用pandas的DataFrame,加载、保存csv数据源,处理数组进行去重、统计
1 Sg = pd.DataFrame(segments)# 词频统计 2 3 Word = Sg.groupby('word')['count'].sum()#导出csv文件 4 5 Word.to_csv('keywords.csv',encoding='utf-8')#制作云词图
第三部分,设置词云属性
1 mask = np.array(Image.open('wordcloud.jpg')) # 定义词频背景 2 wc = wordcloud.WordCloud( 3 font_path='C:/Windows/Fonts/simhei.ttf', # 设置字体格式 4 5 mask=mask, # 设置背景图 6 max_words=50, # 最多显示词数 7 max_font_size=1000, # 字体最大值 8 background_color="white",)
第四部分,生成词云
1 wc.generate_from_frequencies(dfWord) # 从字典生成词云 2 #image_colors = wordcloud.ImageColorGenerator(mask) # 从背景图建立颜色方案 3 wc.recolor(color_func=wordcloud.get_single_color_func('blue')) # 将词云颜色设置为背景图方案 4 plt.figure(figsize=(8,8)) 5 plt.imshow(wc) # 显示词云 6 plt.axis('off') # 关闭坐标轴 7 plt.show() # 显示图像
生成云词图代码链接:https://github.com/creating20/analysis/blob/master/temp.py
总结:我们用requests去请求网站以及用BeautifulSoup进行解析,这里再次强调requests请求网页信息时,一定记得加上请求头部,至于两种请求的选择,各有千秋,爬取数据时,先确定一级网址,之后确定二级网址,最后确定需要爬取二级网址中的哪些标签,第二部分,worldcloud和jieba是生成词云的关键,jiaba用来对导入文件的分词,pandas的DataFrame加载、保存csv数据源,处理数组进行去重、统计,最后便由worldcloud生成云词图,云词中可以看出来,PHP,JavaScript,CSS,HTML,MySQL字体是比较大的,说明招聘者比较看重程序员这些方面的工作能力