约翰到商场购物,他的钱包里有K(1 <= K <= 16)个硬币,面值的范围是1…100,000,000。
约翰想按顺序买 N个物品(1 <= N <= 100,000),第i个物品需要花费c(i)块钱,(1 <= c(i) <= 10,000)。
在依次进行的购买N个物品的过程中,约翰可以随时停下来付款,每次付款只用一个硬币,支付购买的内容是从上一次支付后开始到现在的这些所有物品(前提是该硬币足以支付这些物品的费用)。不幸的是,商场的收银机坏了,如果约翰支付的硬币面值大于所需的费用,他不会得到任何找零。
请计算出在购买完N个物品后,约翰最多剩下多少钱。如果无法完成购买,输出-1
记录F(1<<i)时的最远购物距离
然后枚举已经更新了什么刷表法更新。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e5+100;
inline void read(int &x){
x=0;
int f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
x*=f;
}
int S[N]={};
int C[21]={};
int F[(1<<17)];
int n,k;
int Mx;
int Get(int now,int Id){
int sum=S[Id]+C[now];
if(sum>S[n])return n;
int pos=upper_bound(S+1,S+1+n,sum)-S-1;
return max(pos,Id);
}
int main(){
memset(F,-1,sizeof(F));
F[0]=0;
read(k);
read(n);
for(int i=1;i<=k;++i){
read(C[i]);
}
for(int i=1;i<=n;++i){
read(S[i]);
S[i]+=S[i-1];
}
int Mx=(1<<k)-1;
for(int i=0;i<=Mx;++i){
if(F[i]==-1)continue;
for(int j=0;j<k;++j){
if(!(i&(1<<j))){
F[i|(1<<j)]=max(F[i|(1<<j)],Get(j+1,F[i]));
}
}
}
int ans=-1;
for(int i=0;i<=Mx;++i){
if(F[i]==n){
int now=0;
for(int j=0;j<k;++j){
if(!(i&(1<<j))){
now+=C[j+1];
}
}
ans=max(ans,now);
}
}
cout<<ans;
}