【迁移学习】【应用】柏油路路面破损检测

基于迁移学习的无重神经网络在柏油路路面破损检测中的应用20190115 IJAERS

摘要:本文提出了一种解决道路路面破损自动检测问题的方法,即更精确地检测路面上的坑洞。为此,建议的解决方案使用一个称为wisard的无重神经网络来决定道路图像是否有任何类型的裂缝。此外,所提出的架构也显示了使用迁移学习如何能够提高决策系统的整体准确性。作为研究的一个验证步骤,利用巴西托坎蒂斯联邦大学街道上的图像进行了一项实验。所开发的解决方案的体系结构在数据集中显示了85.71%的准确性,证明其优于最先进的方法。

关键词:破损检测,迁移学习,wisard

 

  1. 引言

在巴西,大部分交通是在柏油路上行驶的。根据国家运输联合会(CNT)2018年8月的静态公告,公路运输占货运矩阵的61%。由于如此高的交通需求,巴西需要更多的沥青道路。

尽管巴西的公路运输十分重要,但由于道路和公路状况,仍存在严重问题。检测问题,如裂缝和其他损坏,成本高昂,通常由运输机构手动进行。不幸的是,公路上出现的坑洞比探测到的要快。因此,缺乏更优质的道路已经导致了经济货币价值外展的后果,例如致命事故,已经夺去了许多不可替代的生命。

人工智能技术的进步与图像处理研究相结合,为计算机视觉这一新领域提供了背景。这一领域应用了能够通过模拟人类视觉感知的算法模拟人脑行为的技术。这样,本文给出了一个基于计算机视觉的在已铺筑道路的图像中检测是否存在危险(损坏)的技术的系统的结果。

因此,提出的解决方案的架构使用一个称为wisard的无重神经网络模型,以及能够选择输入图像特征的迁移学习。

目前,国内外对缺陷检测问题的研究还很多。Ouma和Hahn提出了柏油路中初始或微线状缺陷的提取和识别方法。为此,它们的系统主要由三种方法组成:离散小波变换分离和分类故障;连续形态变换滤波检测故障形状;圆形Radon变换用于角度几何方向分析,用于识别和分类故障类型。因此,他们的系统达到了83.2%的精度。

Rodopoulou 他展示了一种通过视频检测沥青路面上的补丁的方法。通过其视觉特征(包括周围的闭合轮廓和纹理)检测斑块。该算法具有84%的检测精度。

Gopalakrishnan et al. 他们使用迁移学习(TL)来分类柏油路是否有损坏。对于这一任务,该模型使用了一个预训练的神经网络VGG16来迁移学习任务。对于分类任务,它使用了单层感知器。结果,Gopalakrishnan在他的数据集上获得了0.9的精度。

对于自动裂纹检测,Hoang等人应用了边缘检测和机器学习两种方法。在边缘检测方面,采用了Sobel和Canny算法,均采用了花授粉元启发式算法来确定边缘的阈值。第二种算法使用卷

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值