树上涂色

本文讨论了在一个涂色问题中,如何在保证与根节点连通的同色块只被涂一次全价的情况下,运用贪心策略确定各个子树的涂色方案。重点在于找到全价点所在的子树并确保其他子树涂半价,以实现整体成本最小化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们来明晰一下状态。注意每个状态说的是与根连通的同色块。也就是说这个子树里面连通同色块可能有很多个,但是与根连通的同色块只有一个

也不难证明,在最优方案中,连通同色块涂全价的点只有一个

“chajia”这一部分就是在考虑\(i\)这个连通块的全价点在哪个子树上。用了一个小贪心,就是有全价点(\(f[i][1]\))的肯定比没全价点的(\(f[i][0]\))劣,所以这个时候让某一个子树中有全价点就可以了,其余子树都是半价点(实际上有我们前面的说法,连通同色块涂全价的点只有一个),然后补齐差价即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值