LLM训练数据集

文本分类(Text Classification)

  • 目标: 将文本分配到预定义的类别。
  • 小类别:
    • 情感分析(Sentiment Analysis)
      • 示例数据集:IMDB、SST-2、Yelp Reviews
    • 主题分类(Topic Classification)
      • 示例数据集:20 Newsgroups、AG News
    • 垃圾邮件检测(Spam Detection)
      • 示例数据集:Enron Email Dataset
    • 语言识别(Language Identification)
      • 示例数据集:Tatoeba
    • 语法接受性分类(Linguistic Acceptability Classification)
      • 示例数据集:CoLA

序列标注(Sequence Labeling)

  • 目标: 为序列中的每个元素(如单词或字符)分配标签。
  • 小类别:
    • 词性标注(Part-of-Speech Tagging, POS)
      • 示例数据集:Penn Treebank、Universal Dependencies
    • 命名实体识别(Named Entity Recognition, NER)
      • 示例数据集:CoNLL-2003、OntoNotes
    • 分块标注(Chunking)
      • 示例数据集:CoNLL-2000
    • 语义角色标注(Semantic Role Labeling, SRL)
      • 示例数据集:PropBank、FrameNet

语言建模(Language Modeling)

  • 目标: 预测下一个单词或补全句子。
  • 小类别:
    • 自回归语言模型(Autoregressive Language Models)
      • 示例数据集:Wikipedia、BookCorpus
    • 掩码语言模型(Masked Language Models)
      • 示例数据集:BERT 使用的 BooksCorpus 和 Wikipedia
    • 生成式语言模型(Generative Language Models)
      • 示例数据集:Common Crawl、OpenWebText

机器翻译(Machine Translation)

  • 目标: 将一种语言的文本翻译成另一种语言。
  • 小类别:
    • 双语平行语料库(Bilingual Parallel Corpora)
      • 示例数据集:WMT、IWSLT、OpenSubtitles
    • 多语言翻译(Multilingual Translation)
      • 示例数据集:OPUS、TED Talks

问答系统(Question Answering)

  • 目标: 根据给定的问题和上下文,生成或选择正确答案。
  • 小类别:
    • 抽取式问答(Extractive QA)
      • 示例数据集:SQuAD、TriviaQA
    • 生成式问答(Generative QA)
      • 示例数据集:MS MARCO、NarrativeQA
    • 开放域问答(Open-Domain QA)
      • 示例数据集:Natural Questions、HotpotQA

文本生成(Text Generation)

  • 目标: 生成符合语法和语义规范的自然语言文本。
  • 小类别:
    • 摘要生成(Summarization)
      • 示例数据集:CNN/DailyMail、XSum
    • 对话生成(Dialogue Generation)
      • 示例数据集:OpenSubtitles、Persona-Chat
    • 故事生成(Story Generation)
      • 示例数据集:WritingPrompts、ROCStories

信息抽取(Information Extraction)

  • 目标: 从非结构化文本中提取结构化信息。
  • 小类别:
    • 关系抽取(Relation Extraction)
      • 示例数据集:TACRED、SemEval
    • 事件抽取(Event Extraction)
      • 示例数据集:ACE 2005、MUC
    • 实体链接(Entity Linking)
      • 示例数据集:Wikification、AIDA

文本相似度与匹配(Text Similarity and Matching)

  • 目标: 计算两个文本片段之间的语义相似度或匹配程度。
  • 小类别:
    • 语义文本相似度(Semantic Textual Similarity, STS)
      • 示例数据集:STS-B、SICK
    • 复述检测(Paraphrase Detection)
      • 示例数据集:MRPC、Quora Question Pairs (QQP)
    • 自然语言推理(Natural Language Inference, NLI)
      • 示例数据集:SNLI、MNLI、RTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值