这里主要是要用到PPT上提到的两个性质
我们如果从后序遍历中标号最大的点(设为\(s\))在反图上开始遍历,那么这次遍历中,\(s\)能到达的点(设为\(V\)),一定在原图上,可以到达\(s\);而由于\(s\)是标号最大的点,所以\(V\)中的点,\(s\)在原图上一定能到达(否则\(V\)中的点的标号比\(s\)大,想一想后缀遍历的定义即可)。所以我们遍历到的点就是一个强连通分量
于是可以证明正确性
05-10
这里主要是要用到PPT上提到的两个性质
我们如果从后序遍历中标号最大的点(设为\(s\))在反图上开始遍历,那么这次遍历中,\(s\)能到达的点(设为\(V\)),一定在原图上,可以到达\(s\);而由于\(s\)是标号最大的点,所以\(V\)中的点,\(s\)在原图上一定能到达(否则\(V\)中的点的标号比\(s\)大,想一想后缀遍历的定义即可)。所以我们遍历到的点就是一个强连通分量
于是可以证明正确性