Kosaraju 算法的证明

这里主要是要用到PPT上提到的两个性质
我们如果从后序遍历中标号最大的点(设为\(s\))在反图上开始遍历,那么这次遍历中,\(s\)能到达的点(设为\(V\)),一定在原图上,可以到达\(s\);而由于\(s\)是标号最大的点,所以\(V\)中的点,\(s\)在原图上一定能到达(否则\(V\)中的点的标号比\(s\)大,想一想后缀遍历的定义即可)。所以我们遍历到的点就是一个强连通分量
于是可以证明正确性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值