1. 泰勒展开
假设函数 $ u(x) $ 在点 $ \mathbb{E}[\widetilde{\omega}] $ 处是光滑的(即具有任意阶导数),我们可以对 $ u(x) $ 在 $ x = \mathbb{E}[\widetilde{\omega}] $ 处进行泰勒展开:
\[u(x) = \sum_{n=0}^{\infty} \frac{1}{n!} u^{(n)}(\mathbb{E}[\widetilde{\omega}]) (x - \mathbb{E}[\widetilde{\omega}])^n, \]
其中:
- $ u^{(n)}(\mathbb{E}[\widetilde{\omega}]) $ 表示函数 $ u(x) $ 在点 $ \mathbb{E}[\widetilde{\omega}] $ 处的第 $ n $ 阶导数,
- $ (x - \mathbb{E}[\widetilde{\omega}])^n $ 是展开中的幂项。
2. 期望运算
现在,我们将随机变量 $ \widetilde{\omega} $ 代入 $ u(x) $ 的泰勒展开式中,并对整个表达式取期望:
\[\mathbb{E}[u(\widetilde{\omega})] = \mathbb{E}\left[ \sum_{n=0}^{\infty} \frac{1}{n!} u^{(n)}(\mathbb{E}[\widetilde{\omega}]) (\widetilde{\omega} - \mathbb{E}[\widetilde{\omega}])^n \right]. \]
由于期望运算符是线性的,我们可以将求和符号和期望运算符交换位置:
\[\mathbb{E}[u(\widetilde{\omega})] = \sum_{n=0}^{\infty} \frac{1}{n!} u^{(n)}(\mathbb{E}[\widetilde{\omega}]) \mathbb{E}[(\widetilde{\omega} - \mathbb{E}[\widetilde{\omega}])^n]. \]