654321

1. 泰勒展开

假设函数 $ u(x) $ 在点 $ \mathbb{E}[\widetilde{\omega}] $ 处是光滑的(即具有任意阶导数),我们可以对 $ u(x) $ 在 $ x = \mathbb{E}[\widetilde{\omega}] $ 处进行泰勒展开:

\[u(x) = \sum_{n=0}^{\infty} \frac{1}{n!} u^{(n)}(\mathbb{E}[\widetilde{\omega}]) (x - \mathbb{E}[\widetilde{\omega}])^n, \]

其中:

  • $ u^{(n)}(\mathbb{E}[\widetilde{\omega}]) $ 表示函数 $ u(x) $ 在点 $ \mathbb{E}[\widetilde{\omega}] $ 处的第 $ n $ 阶导数,
  • $ (x - \mathbb{E}[\widetilde{\omega}])^n $ 是展开中的幂项。

2. 期望运算

现在,我们将随机变量 $ \widetilde{\omega} $ 代入 $ u(x) $ 的泰勒展开式中,并对整个表达式取期望:

\[\mathbb{E}[u(\widetilde{\omega})] = \mathbb{E}\left[ \sum_{n=0}^{\infty} \frac{1}{n!} u^{(n)}(\mathbb{E}[\widetilde{\omega}]) (\widetilde{\omega} - \mathbb{E}[\widetilde{\omega}])^n \right]. \]

由于期望运算符是线性的,我们可以将求和符号和期望运算符交换位置:

\[\mathbb{E}[u(\widetilde{\omega})] = \sum_{n=0}^{\infty} \frac{1}{n!} u^{(n)}(\mathbb{E}[\widetilde{\omega}]) \mathbb{E}[(\widetilde{\omega} - \mathbb{E}[\widetilde{\omega}])^n]. \]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值