机器学习中,knn算法后续对k值使用cross_val_score和GridSearchCV的区别

本文通过介绍cross_val_score和GridSearchCV在KNN模型调优中的应用,详细探讨了如何利用交叉验证评估模型性能并找到最佳参数组合。重点讲解了如何手动和自动进行超参数搜索,以及数据集划分的稳定性和随机性对模型的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本文就介绍了机器学习的基础内容knn算法的模型调优,图片来源《Python大战机器学习》。


一、cross_val_score(选出最优评分的模型)

在这里插入图片描述
代码实现如下
在这里插入图片描述
结果为:在这里插入图片描述
在这里插入图片描述

二、GridSearchCV(暴力搜索选出最优参数)

在这里插入图片描述
代码实现如下:

在这里插入图片描述
结果:
在这里插入图片描述

总结

①cross_val_score :用于获取每个交叉验证的得分,然后根据得分score来选择合适的超参数,通常需要编写手动完成交叉
②GridSearchCV :除了能够完成自行交叉验证外,返回了最后的超参数及对应的最优模型,但是k值的选取是自己添加,需要有先验经验
③划分数据集是需要固定数据,比如随机数的种子有没有固定,如果没有固定随机数种子,可能导致每次拆分的训练集和测试集都不一样,即使相同的参数范围,训练出的模型指标一般都不一样。
④例如:在sklearn可以随机分割训练集和测试集(交叉验证),只需要在代码中引入model_selection.train_test_split就可以了:
x_train, x_test, y_train,y_test=model_selection.train_test_split(x,y,test_size=0.2,random_state=0)
这里的random_state就是为了保证程序每次运行都分割一样的训练集和测试集。否则,同样的算法模型在不同的训练集和测试集上的效果不一样。
当你用sklearn分割完测试集和训练集,确定模型和初始参数以后,你会发现程序每运行一次,都会得到不同的准确率,无法调参。这个时候就是因为没有加random_state。加上以后就可以调参了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

disccutter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值