POJ 1330 Nearest Common Ancestors 在线LCA

题目:http://poj.org/problem?id=1330

题意:给定一棵树,求两点的最近公共祖先

思路:刚学在线LCA,练练手

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;

const int N = 10010;
struct edge
{
    int to, next;
}g[N*2];
int dp[20][N*2], deg[N];
int cnt, head[N];
int tot, dep[N*2], ver[N*2], fir[N];
bool vis[N];
void add_edge(int v, int u)
{
    g[cnt].to = u, g[cnt].next = head[v], head[v] = cnt++;
}
void dfs(int v, int cur)
{
    vis[v] = true, ver[++tot] = v, dep[tot] = cur, fir[v] = tot;
    for(int i = head[v]; i != -1; i = g[i].next)
    {
        int u = g[i].to;
        if(! vis[u])
        {
            dfs(u, cur + 1);
            ver[++tot] = v, dep[tot] = cur;
        }
    }
}
void ST(int n)
{
    for(int i = 1; i <= n; i++)
        dp[0][i] = i;
    for(int i = 1; (1<<i) <= n; i++)
        for(int j = 1; j <= n - (1<<i) + 1; j++)
            dp[i][j] = dep[dp[i-1][j]] < dep[dp[i-1][j+(1<<(i-1))]] ? dp[i-1][j] : dp[i-1][j+(1<<(i-1))];
}
int RMQ(int l, int r)
{
    int k = log(r - l + 1) / log(2);
    return dep[dp[k][l]] < dep[dp[k][r-(1<<k)+1]] ? dp[k][l] : dp[k][r-(1<<k)+1];
}
int LCA(int v, int u)
{
    v = fir[v], u = fir[u];
    if(v > u) swap(v, u);
    int res = RMQ(v, u);
    return ver[res];
}

int main()
{
    int t, n, a, b;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &n);
        cnt = tot = 0;
        memset(head, -1, sizeof head);
        memset(vis, 0, sizeof vis);
        memset(deg, 0, sizeof deg);
        for(int i = 0; i < n - 1; i++)
        {
            scanf("%d%d", &a, &b);
            deg[b]++;
            add_edge(a, b);
            add_edge(b, a);
        }
        int root = -1;
        for(int i = 1; i <= n; i++)
            if(deg[i] == 0)
            {
                root = i; break;
            }
        dfs(root, 1);
        ST(2 * n - 1);
        scanf("%d%d", &a, &b);
        printf("%d\n", LCA(a, b));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值