关于裴蜀定理的一些证明

裴蜀定理:
对任何 a,bZ 和它们的最大公约数 d ,关于未知数x y 的线性不定方程(称为裴蜀等式):ax+by=c有整数解 (x,y) 当且仅当 dc ,可知有无穷多解。特别地,一定存在整数 x,y ,使 ax+by=d 成立。
推论:
a,b 互质的充要条件是存在整数 x,y 使 ax+by=1

对于 (a,bZ) ax+by=gcd(a,b) 一定有整数解 x,y 的证明:
d=gcd(a,b) ,可得 da db ,且 d(ax+by)
s a b 的线性组合集中最小的正元素,并且对于某个x,yZ,有 s=ax+by ,可知 sZ
q=a/s ,则有 r=amods=aqs=aq(ax+by)=a(1qx)+b(qy) ,因此 r 也是a b 的一个线性组合,已知s是这个线性集合中的最小正整数,又 0r<s ,可得 r=0 ,因此有 sa ,同理有 sb ,因此 s a b 的公约数,所以有ds。因为对于任意 x,yZ ,有 d(ax+by) ,而对于某个 x,yZ ,有 s=ax+by ,所以有 ds 。但 ds s>0 ,可得 ds 。综合 ds ds ,得 d=s ,故 s =gcd(a,b)。我们已知 s a b 的线性组合集中的最小正元素,故ax+by=gcd(a,b)一定有整数解 x,y ,亦可知对于 a,bZ gcd(a,b) ax+by(x,yZ) 的最小正元素

对于 (a,bZ) ax+by=c 有整数解的条件是 gcd(a,b)c 的证明:
充分性:设 d=gcd(a,b) ,已知 ax+by=d 一定有整数解,设其解为 (x0,y0) dc ,则存在 kZ ,使得 c=kd=k(ax+by)=a(kx)+b(ky) ,即解为 (kx0,ky0)
必要性:因 ax1+by1=cx1,y1Z ,设 d=gcd(a,b) ,有 da db d(ax1,by1) ,即 dc

以上是本人学习过程中的一些总结,参考了算法导论,若有错误欢迎指正

  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值