题目:
http://poj.org/problem?id=3254
题意:
有一块n*m的田,其中为1的代表可以在这里放一只牛,对于给定的田,有多少种不同的放法,使任意两只牛不相邻
思路:
定义
dp[i][j]
为第
i
行放法为
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
using namespace std;
const int N = 20, INF = 0x3f3f3f3f, MOD = 100000000;
int mpa[N], stu[1<<12], dp[N][1<<12];
int main()
{
int n, m;
while(~ scanf("%d%d", &n, &m))
{
memset(mpa, 0, sizeof mpa);
memset(dp, 0, sizeof dp);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
int a;
scanf("%d", &a);
if(a == 0) mpa[i] |= (1<<(m-j));//把不能放牛的位置标记为1
}
int k = 0;
for(int i = 0; i < (1<<m); i++)//把在一行中所有满足放牛位置互不相邻的状态全部打表出来
if(!(i & (i<<1))) stu[k++] = i;
for(int i = 0; i < k; i++) //求出第一行满足条件的状态
if(!(mpa[1] & stu[i])) dp[1][i] = 1;
for(int i = 2; i <= n; i++)
{
for(int j = 0; j < k; j++)
{
if(mpa[i] & stu[j]) continue;//判断当前的放法能否放在第i行上,等于0可以,否则不能
for(int l = 0; l < k; l++)
{
if(mpa[i-1] & stu[l]) continue; //枚举上一行的满足条件的放法
if(!(stu[j] & stu[l])) dp[i][j] += dp[i-1][l];//判断当前行和上一行的放法是否发生冲突
}
}
}
int res = 0;
for(int i = 0; i < k; i++) res = (res + dp[n][i]) % MOD;
printf("%d\n", res);
}
return 0;
}