题目
请考虑一颗二叉树上所有的叶子,这些叶子的值按从左到右的顺序排列形成一个 叶值序列 。
举个例子,如上图所示,给定一颗叶值序列为 (6, 7, 4, 9, 8)
的树。如果有两颗二叉树的叶值序列是相同,那么我们就认为它们是 叶相似 的。如果给定的两个头结点分别为 root1
和 root2
的树是叶相似的,则返回 true
;否则返回 false
。
解法
一、深度优先搜索-先序遍历( Python )
class Solution:
def leafSimilar(self, root1: TreeNode, root2: TreeNode) -> bool:
def pre_order(node, leafs):
if node:
if not(node.left or node.right):
leafs.append(node.val)
pre_order(node.left, leafs)
pre_order(node.right, leafs)
leafs1, leafs2 = [], []
pre_order(root1, leafs1)
pre_order(root2, leafs2)
return leafs1 == leafs2
基本思路
通过先序遍历将找到所有叶子节点并将其放入列表中,该操作分别对root1
和root2
各执行一次即可。
复杂度分析
时间复杂度为 O ( N 1 + N 2 ) O \left( N_1+N_2 \right) O(N1+N2),空间复杂度为 O ( N 1 + N 2 + H 1 + H 2 ) O \left( N_1 + N_2 + H_1 + H_2 \right) O(N1+N2+H1+H2),其中 N 1 , N 2 N_1, N_2 N1,N2分别表示两棵树的节点数, H 1 , H 2 H_1, H_2 H1,H2分别表示两棵树的高度。
二、迭代-先序遍历( Python )
class Solution:
def leafSimilar(self, root1: TreeNode, root2: TreeNode) -> bool:
return self.iterative(root1) == self.iterative(root2)
def iterative(self, root):
res, stack = [], []
while stack or root:
if root:
stack.append(root)
root = root.left
else:
root = stack.pop()
if not (root.left or root.right):
res.append(root.val)
root = root.right
return res
基本思路
只不过是把递归换成迭代而已,其他思路不变。
复杂度分析
时间复杂度为 O ( N 1 + N 2 ) O \left( N_1 + N_2 \right) O(N1+N2),空间复杂度为 O ( max { N 1 , N 2 } ) O \left( \max \left\{N_1,N_2 \right\} \right) O(max{N1,N2})。