干货 | 什么是磁传感器?最常用的磁传感器类型及应用

本文介绍了磁传感器的工作原理,包括MR、AMR和TMR传感器元件,以及霍尔元件。这些传感器将磁场转换为电信号,广泛应用于磁性开关、旋转传感器和硬盘磁头等。ABLIC提供霍尔效应和TMR传感器IC,适应各种应用需求。
摘要由CSDN通过智能技术生成

1、什么是磁传感器?

磁传感器通常是指将磁场的大小和变化转换成电信号。

磁场,以地球磁场(地磁)或磁石为例的磁场是我们熟悉但不可见的现象。将不可见的磁场转化为电信号,以及转化为可见效应的磁传感器一直以来都是研究的主题。

从几十年前使用电磁感应效应的传感器,到如今涉及磁场电效应、磁阻效应、约瑟夫森效应和其他物理现象的应用。

2、典型磁传感器及其应用

现在,利用各种物理效应的传感器已经商业化。以下,我们将重点介绍最常用的磁传感器类型及其应用。

【MR 传感器元件】

MR传感器元件是利用磁阻效应(MR效应)的磁传感器元件。有许多使用不同工作原理的 MR 传感器类型。

MR效应是电阻随磁场变化而变化的现象。这种效应发生在磁性物料(例如铁、镍或钴)中。

在理解MR 效应之前需要先了解电子自旋,以及洛伦兹力如何利用电子电荷起作用。

当电子在铁磁物料(具有一定磁性的物料)中运动时,电子的自旋发生波动,(电子)在磁性物料中的散射概率就会上升或下降。这就是导致 MR 效应的原因。

电子有两个重要参数:电荷和自旋。它们具有相同的负电荷,但电子自旋有两种:向上自旋和向下自旋。1922年通过实验验证了电子自旋,并确认了电子具有电子角动量和磁矩特征。

当电子通过导电物料时,它们会发生散射(电子散射)。电子散射是物料中的静电导致电子偏离其正常轨迹的现象。

洛伦兹力是一种当导电物料中的移动带电粒子(电子)暴露于磁场时所起作用的力。它影响所有带电粒子并且不依赖于电子自旋。

【AMR 传感器元件】

1856年,William Thomson通过观察放置于外部磁场中的铁磁物料,发现了各向异性磁阻效应(AMR效应)。

当铁磁物料中的磁化方向与电流平行时,电子轨道就会垂直于电流,从而产生最大电阻。这增加了依赖于自旋的散射,导致电阻上升。

当磁化方向垂直于电流时,电子轨道就会与电流平行,减少了依赖于自旋的散射,并产生最小电阻。

由磁场状态引起的电阻变化率称为磁阻比率(MR比率)。AMR 传感器元件的 MR 比率约为 5%。AMR传感器元件由于结构简单,常用于磁性开关和旋转传感器。

【TMR 传感器元件】

常温下的隧道磁阻效应(TMR 效应)是日本东北大学Terunobu Miyazaki教授于 1995 年发现的。TMR 传感器元件是利用 TMR 效应的磁传感器元件,是由极薄的纳米级非磁性绝缘层夹在两个铁磁层中间构成。电子隧道通过绝缘层从一个铁磁层穿到另一个铁磁层。这是一种量子力学现象。

当两种铁磁物料的磁化方向平行时电阻减小,不平行时电阻增大。

TMR 交界处的 MR 比率(电阻随磁场状态的变化率)在生产中可达到 100% 以上。在实验室条件下,已达到 1,000% 以上的水平。

由于具有高灵敏度,TMR 传感器元件非常适合用于硬盘磁头或高灵敏度旋转角度传感器。

【霍尔元件】

霍尔元件是霍尔效应的一种应用。Edwin H. Hall于1879年发现的霍尔效应证明了洛伦兹力会产生与电流和磁场方向成直角的电压。该电压称为霍尔电压,根据Fleming左手法则,电压的方向随磁通量的方向而变化。(买电子元器件就上唯样商城)电压的大小和方向(正、负)使得检测磁场(N极、S极)的大小和方向成为可能。

霍尔元件的磁灵敏度不如磁阻传感器元件。但作为不依赖于磁性物料的磁传感器,可以在铁磁场或恶劣环境下使用,因此可用作电流传感器或各种磁性开关。

3、ABLIC的磁传感器

ABLIC 现在提供由硅霍尔元件和信号处理电路构成的霍尔效应传感器和 TMR 传感器IC,同样地融合了信号处理电路。

我们能提供适合您的应用和环境需求的理想产品。

ABLIC致力于打造一个安全宜居的社会,通过我们的技术,利用我们的传感器元件的优势,提出并提供磁传感器解决方案。

免责声明:本文转自网络,版权归原作者所有,如涉及作品版权问题,请及时与我们联系,谢谢!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值