【数据结构】第一讲 基本概念&&最大子列和问题

1.1什么是数据结构

例1:有一堆书,一个书架,如何去存储?

很不科学,因为没有说书架的样式—也即存储空间的规模,数据的规模。

  • 1.新书怎么插入
  • 2.怎么找到一本书

方法一:随便放

  1. 放起来简单,查起来就难,必然是个平衡的问题。

方法二:

  1. 按字母序放,然后查找时候二分查找
  2. 然而,插入一本书,比如A开头,那么其他书都得全部后移。

方法三:

  1. 把书架划分成几块区域,每块区域指定摆放某种类别的图书;在每种类别内,按照书名的拼音字母顺序排放
  • 1.如何找某本指定的书?在二分查找之前,先定一个类别,然后在这个类别下进行二分查找。
  • 2.如何插入一本书?先定类别,二分查找找到该插入的位置,再插入,移空位,插入。

另外引出的问题:空间如何分配?(藏书量不同,给多了有闲置,给少了,进新书需要加柜子)类别分多细比较好呢?(类别太多也不好分)

总结:解决问题方法的效率,跟数据的组织方式有关

例2:顺序打印1-n(n是一个输入的数字)

对比两个函数的效率:

for(int i=0;i<n;++i)
{
	cout<<i<<endl;
}

递归调用函数:(好像还没用到临时变量,更省空间)

void printN(int n)
{
if(n)
{
	printN(n-1);
	cout<<n<<endl;
}
return;
}

每次一个递归调用函数,都需要把目前函数的进行状态存储起来,再进入递归函数。
n=10000000直接罢工!因为递归吃掉了所有可利用空间还不够用!
空间复杂度正比于问题规模。
在这里插入图片描述

解决问题方法的效率,跟空间的利用效率有关。

例3:对比两个函数计算多项式函数的时间

f(x)=a0+a1*x+a2*x^2+...+an*x^n

单步计算每一项求和:(实际上浪费了很多计算,计算了比如计算了x^n-1,但没有用这个值去计算x^n,而是重新计算)

本质:因为pow,执行了(1+2+3+…+n)次乘法

double f(int n,double a[],double x)
{
	int i;
	double p=a[0];
	for(i=0;i<=n;i++)
	{
		p+=(a[i]*pow(x,i));
	}
	return p;
}

括号优先级运算:(执行了n次乘法)
在这里插入图片描述

double f(int n,double a[],double x)
{
	int i;
	double p=a[n];
	for(i=n;i>0;i--)
	{
		p=a[i-1]+x*p;
	}
	return p;
}

如果函数跑的太快,定义一个

#define MAXX 1e7
//for循环执行这个函数

解决问题方法的效率,跟算法的巧妙程度有关

例四:矩阵抽象数据类型定义

  • 类型名称:矩阵(Matrix)
  • 数据对象集:一个MN的矩阵(I=1,…,M,j=1…N)由MN个三元组<a,i,j>组成,a为值,i是行号,j是列号。(抽象在于没有提示到底是用一个二维数组,还是一维数组,还是十字链表 )
  • 操作集:’
    • Matrix Create(int M,int N):范围M*N的空矩阵。
    • int GetMaxrow(Matrix A):获得矩阵A的总行数。
      在这里插入图片描述实际需要什么的时候,直接使用一个define
      #define ElementType float/int/...
      这样就避免了对int实现了一遍,但下一次要double类型的。

到底什么是数据结构

数据对象在计算机中的存储方式

  • 数据的逻辑结构(1:1(线性结构),1:n(树形结构),m:n(图形结构))
  • 数据的物理结构 在内存里到底是什么放法,数组(连起来)还是链表(东一个,西一个)。

1.2什么是算法

算法(Algorithm)

  • 一个有限的指令集
  • 有输入
  • 有输出
  • 有限步骤后终止
  • 每一条指令必须有充分,明确的目标,计算机能够处理,不依赖于任何语言

例1:选择排序算法的伪码描述

void SelectSort(int List[],int N)
{//将N个整数List[0]...List[N-1]进行非递减排序
	for(i=0;i<N;i++)
	{
		MinPosition=ScanForMin(List,i,N-1);
		//从List[i]到List[N-1]找最小元,将其位置赋值给MinPosition
		Swap(List[i],List[MinPosition]);
		//将未排序部分的最小元素换到有序部分的最后位置
	}	
}

即便代码写成这样,但依旧很抽象:

  • List到底是数组还是链表(虽然看上去很像数组)
  • Swap用函数还是宏去实现。

分析复杂度

一般关心最坏情况下复杂度,而不是平均,因为平均不好计算。
机器运行加减法的速度比乘除法快很多,加减法忽略不计。

二分法查找代码

int f(int List[],int X,int N)
{
	int Middle=0;
	int left_hand=0;
	int right_hand=N-1;
	while(left_hand<=right_hand)
	{   
	    middle=(left_hand+right_hand)/2;
		if(List[Middle]>X)
		{
			right_hand=Middle-1;
		}
		else if(List[Middle]<X)
		{
			left_hand=Middle+1;
		}
	    else if(List[Middle]==X)
		    return Middle;
	}
	return -1;
}

//最好的时间复杂度T(1),最坏的时间复杂度T(n)=(log2N),空间复杂度为O(n)

在这里插入图片描述

⭐1.3应用实例:最大子列和

给定N个整数的序列{A1,A2…An},求函数

的最大值

算法一:蛮力(计算全部结果)

原始版 O ( n 3 ) O(n^3) O(n3)

很笨的计算方法,很多重复计算的结果, O ( n 3 ) O(n^3) O(n3)

int MaxSubseqSum1(int A[],int N)
{
	int ThisSum,MaxSum=0;
	int i,j,k;
	for(i=0;i<N;++i)//i是子列左端位置
	{
		for(j=i;j<N;++j)//j是子列右端位置
		{
			ThisSum=0;//ThisSum是A[i]到A[j]的子列和
			for(k=i;k<=j;++k)//对子列求和
			{
				ThisSum+=A[k];
			}
			if(ThisSum>MaxSum)//判断是不是最大
				MaxSum=ThisSum;
		}
	}
}
改进版 O ( n 2 ) O(n^2) O(n2)

实际上没必要从头开始加那么多,当j增加一个的时候,让thissum加上A[j]这一个元素即可。
在这里插入图片描述参考:

int MaxSubseqSum2(int A[],int N)
{
	int ThisSum,MaxSum=0;
	int i,j,k;
	for(i=0;i<N;++i)//i是子列左端位置
	{
		ThisSum=0;//ThisSum是A[i]到A[j]的子列和
		for(j=i;j<N;++j)//j是子列右端位置
		{
			ThisSum+=A[j];
			//对相同的i不同的j,只要在j-1次循环的基础上累加1项即可。
			if(ThisSum>MaxSum)//判断是不是最大
				MaxSum=ThisSum;
		}
	}
}
算法三:分治算法 O ( n l o g 2 n ) O(nlog_2^n) O(nlog2n)

一分为二,递归得到两边的子问题,以及跨越边界的子列和。
比较小问题和跨边界问题,看哪个值大。
T ( N ) = 2 T ( N / 2 ) + c N T ( 1 ) = O ( 1 ) T(N)=2T(N/2)+cN T(1)=O(1) T(N)=2T(N/2)+cNT(1)=O(1)

最大子列和问题(C语言、分治算法)

int MaxSubseqSum3(int data[], int left, int right)
{
    int mid;
    int leftMaxSum, rightMaxSum;//左右小问题的最大长度
    int leftBoardSum, rightBoardSum;//左右循环求含边界的和
    int leftMaxBoardSum, rightMaxBoardSum;//记录左右含边界的最大的和
   /* 退出条件 */
    if (left == right) 
        return data[left];

	/* “分的过程” */
    mid = (left + right) / 2; //找到中分点
    
    /* 递归求两边的最大值 */
    leftMaxSum = DivideConquer(data, left, mid);  // 左边最大值
    rightMaxSum = DivideConquer(data, mid + 1, right);  // 右边最大值
    
	 /* 跨越边界的最大值 := leftMaxBoardSum + rightMaxBoardSum  */
     leftMaxBoardSum = data[mid];
     leftBoardSum = 0;
     for (int i = mid; i >= left; i--) {/* 从中线向左扫描 */
        leftBoardSum += data[i];
        if (leftBoardSum > leftMaxBoardSum)
            leftMaxBoardSum = leftBoardSum;
     }   //左边界扫描

    rightMaxBoardSum = data[mid + 1];
    rightBoardSum = 0;
    for(int i = mid + 1; i <= right; i++) {/* 从中线向右扫描 */
        rightBoardSum += data[i];
        if(rightBoardSum > rightMaxBoardSum)
            rightMaxBoardSum = rightBoardSum;
    }  //右边界扫描 
    // 治的过程,最大值为左边的最大值、右边最大值,跨越边界最大值之中的最大值 
    return MaxofThreeNum(leftMaxSum, rightMaxSum, leftMaxBoardSum + rightMaxBoardSum);//返回三个数中的最大数
}
算法四:在线处理 O ( N ) O(N) O(N)

在线是指对每输入一个数据,就进行"即时"处理。

int MaxSubSeqSum4(int A[],int N)
{
	int ThisSum,MaxSum;
	int i;
	ThisSum=MaxSum=0;
	for(i=0;i<N;++i)
	{
		ThisSum+=A[i];//向右累加
		if(ThisSum>MaxSum)//发现更大的子列和则更新
			MaxSum=ThisSum;
		else if(ThisSum<0)//如果当前子列和为负
			ThisSum=0;//则不能使后面的部分和增大,抛弃之
	}
	return MaxSum;
}
题目链接:7-1 最大子列和问题 (20 分)

题目:

<输入格式:
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。

输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20

代码
#include <iostream>
using namespace std;
int MaxSubSeqSum4(int A[],int N)
{
	int ThisSum,MaxSum;
	int i;
	ThisSum=MaxSum=0;
	for(i=0;i<N;++i)
	{
		ThisSum+=A[i];//向右累加
		if(ThisSum>MaxSum)//发现更大的子列和则更新
			MaxSum=ThisSum;
		else if(ThisSum<0)//如果当前子列和为负
			ThisSum=0;//则不能使后面的部分和增大,抛弃之
	}
	return MaxSum;
}
int main()
{
    int n;
    cin>>n;
    int* a=new int[n];
    for(int i=0;i<n;++i)
    {
            cin>>a[i];
    }
    cout<<MaxSubSeqSum4(a,n);
}

穿插分治思想:二分归并排序

二分归并排序算法MergeSort思想:
将别排序数组分成相等的两个子数组,然后用同样的算法对两个数组分别排序,最后将两个数组归并成一个数组。
对小数组 L [ 1...2 ] L[1...2] L[1...2]进行排序时,按照算法进行进一步划分,划分结果是 L [ 1 ] L[1] L[1] L [ 2 ] L[2] L[2]。各含有一个元素,不需要排序,这时算法将停止递归调用并开始归并。

MergeSort()伪码描述

算法1.5 M e r g e S o r t ( A , p , r ) MergeSort(A,p,r) MergeSort(A,p,r)

输入:数组 A [ p . . r ] A[p..r] A[p..r],1<=p<=r<=n
输出:从A[p]到A[r]按照递增顺序排好的数组A

void MergeSort(A,p,r)
{
	if(p<r)
		q=(p+r)/2;
	MergeSort(A,p,q);
	MergeSort(A,q+1,r);
	Merge(A,p,q,r);	//关键实现在于Merge()函数
}
其中的 M e r g e ( A , p , q , r ) Merge(A,p,q,r) Merge(A,p,q,r)函数是将两个排好序的数组 A [ p . . q ] A[p..q] A[p..q] A [ q + 1... r ] A[q+1...r] A[q+1...r]合并成一个大数组

基本思想:将两个小数组分别复制到B与C中,A变成空数组,用来存放排好序的大数组。接着算法比较B与C的首元素,如果哪个元素较小,就把它放到A中,比较1次,移走B或者C中1个元素,如果B或者C中的一个变成空数组,那么把另一个数组的剩下所有元素复制到A中。伪码描述如下:

输入:按照递增顺序排好序的数组 A [ p . . q ] A[p..q] A[p..q] A [ q + 1.. r ] A[q+1..r] A[q+1..r]
输出:按照递增顺序排好序的数组 A [ p . . r ] A[p..r] A[p..r]

void Merge(A,p,q,r)
{	
	int i,j,k;
	int x=q-p+1;int y=r-q;
	//将A[p..q]复制到B[1..x],将A[q+1..r]复制到C[1..y]
	for(i=p;i<=q;++i)
	{
		B[i-p+1]=A[i];
	}
	for(i=q+1;i<=r;++i)
	{
		C[i-q]=A[i];
	}
	i=1,j=1,k=p;
	while(i<=x&&j<=y)
	{
		if(B[i]<=C[j])
		{
			A[k]=B[i];
			++i;
		}
		else
		{
			A[k]=C[j];
			++j;
		}
		++k;
	}
	//if(i>x) then 将C[j..y]复制到A[k..r]//i所在数组复制完而越界
	if(i>x)
	{
		for(i=j;i<=y;++i)//i已经失去作用,拿来做变量
			{A[k]=C[k];++k}
	}
	//else 将B[i..x]复制到A[k..r]//j所在数组复制完而越界
	else
	{
		for(j=i;j<x;++j)
		{A[k]=B[j];++k}
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值