【动态规划】引例--多起点,多终点的最短路径问题

问题背景

在这里插入图片描述

  • 在实例中经常会遇到路径选择问题,n个起点 S 1 , S 2 , . . . , S N S_1,S_2,...,S_N S1,S2,...,SN,n个终点 T 1 , T 2 , . . . , T N T_1,T_2,...,T_N T1,T2,...,TN,其余结点是途经结点,结点之间用边相连,边上的整数表示长度。
  • 问题:给定道路图,在所有起点到终点的路径中找一条长度最短的路径
    在这里插入图片描述

蛮力算法

穷举每一个起点到每一个终点的所有可能路径,然后计算每条路径的长度,从中找出最短路径。每条路径对于上述实例,每条路径由4条边组成,除了上下最上,最下两条边的某些结点以外,位于中间的结点有2条边可选。
起点个数m,n为每条路径长度,也就是路网的层数。那么从起点到终点的路径大致达到 O ( m 2 n ) O(m2^n) O(m2n)量级。

动态规划

在这里插入图片描述

求解过程

终点往起点回推,把求解过程分为4步,每一步对应的子问题的终点不变,但起点逐步前移,使得前步已经求解的问题恰好是后面新问题的子问题,到最后一步求解的是最大的子问题,正好是原始问题
具体来说所有子问题的终点都是 T m T_m Tm(m=1,2,…,5)。但起点不同

  • 第一步对应子问题的起点是 C l C_l Cl(l=1,2,3,4)
  • 第二步对应的子问题的起点是 B k B_k Bk(k=1,2,3,4,5)
  • 第三步对应的子问题的起点是 A j A_j Aj(j=1,2,3,4)
  • 第四步对应的子问题的起点是 S i S_i Si(i=1,2,3,4,5)。这实际上就是原问题

每一步需要求解的是当前起点到终点最短路径及其长度

注意:计算完之后要标记在图上,便于追踪。

  • 第一步要确定任何 C l C_l Cl到终点的最短路径。先看C1,再看C2…
  • 第二步要确定从任何 B k B_k Bk到终点的最短路径: F ( B k ) = min ⁡ l { B k C l + F ( C l ) } F(B_k)=\displaystyle\min_l\{B_kC_l+F(C_l)\} F(Bk)=lmin{BkCl+F(Cl)}
  • 类似的完成后两部递推判断:
  • F ( A j ) = min ⁡ k { A j B k + F ( B k ) } F(A_j)=\displaystyle\min_k\{A_jB_k+F(B_k)\} F(Aj)=kmin{AjBk+F(Bk)}
  • F ( S i ) = min ⁡ j { S i A j + F ( A j ) } F(S_i)=\displaystyle\min_j\{S_iA_j+F(A_j)\} F(Si)=jmin{SiAj+F(Aj)}

每个结点标记的解释u/d代表路径方向,后面的数值代表从这个结点作为出发点到达终点所走的路径的最小值。
u代表从这个位置向up(上)走,d代表从这个位置向down(下)走
在这里插入图片描述

总结归纳及时间复杂度分析 O ( m n ) O(mn) O(mn)

与蛮力算法相比,这种算法的好处是:
在判断时只考虑由前面子问题的最优解(是当前子问题最优解的组成部分)可能的延伸结果,从而把许多不可能称为最优解的部分路径今早从搜索中删除,因此能够提高效率。
根据上面的递推公式,除终点外,对每个结点只需要做2次加法(对 C l C_l Cl层结点不做加法)和1次比较,因此算法时间复杂度可以降到 O ( m n ) O(mn) O(mn),其中m代表每层的结点个数n是层数

  • 11
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 多段图的最短路径问题可以使用动态规划法来解决。动态规划法是一种将问题分解成子问题并逐步求解的方法,可以有效地解决复杂的最优化问题。 在多段图的最短路径问题中,我们需要找到从起点终点的最短路径。这个问题可以分解成多个子问题,每个子问题都是从当前节点到终点的最短路径。我们可以从终点开始,逐步向起点推导出每个子问题的最优解,最终得到整个问题的最优解。 具体来说,我们可以定义一个二维数组dp,其中dp[i][j]表示从节点i到节点j的最短路径长度。我们从终点开始,将dp数组初始化为0,然后逐步向起点推导出每个节点的最短路径长度。具体的推导方法如下: 1. 对于终点j,dp[i][j]=0。 2. 对于最后一段的节点i,dp[i][j]=w(i,j),其中w(i,j)表示从节点i到节点j的边权。 3. 对于其他节点i,dp[i][j]=min{dp[i][k]+w(i,j)},其中k是i的后继节点。 最终,dp[1][n]就是整个问题的最优解。 需要注意的是,多段图的最短路径问题只适用于有向无环图。如果图中存在环路,那么就无法使用动态规划法来解决。 ### 回答2: 多段图最短路径问题是指通过一个有向无环图,从源点出发,到达终点,使得路径上所有边权的和最小。多段图最短路径问题最短路径问题的区别在于多段图中有不止一个可能的路径,而且每段路径有一个权值,要求在选择路径时,使得所有路径的权值和最小。为了求解这个问题,常使用动态规划法。 动态规划的基本思想是将问题划分为若干个阶段,每个阶段都有一组状态,计算每个阶段的最优值,通过推导每个状态的最优值,逐步得到问题的整体最优解。对于多段图最短路径问题动态规划的过程如下: 1. 定义状态:设f[i][j]为顶点i到终点j的最短路径长度,定义有k段路程S={s_1,s_2,…,s_k},其中s_1=i,s_k=j。 2. 状态转移方程:对于每一段路程s_t=(x,y),f[x][j]表示从x点出发到终点j的最短路径长度,由此可以得到转移方程:f[x][j]=min{f[y][j]+w[x,y]}。 3. 边界条件:对于终点j,f[j][j]=0。 4. 求解问题:最终结果为f[i][j]。 在使用动态规划解决多段图最短路径问题时,需要进行自底向上的迭代计算,从最后一段路程开始,每次计算当前段的每个起点的最短路径,最后得到整个图的最短路程。 总之,动态规划法是解决多段图最短路径问题的有效方法,通过划分阶段、定义状态、建立状态转移方程和考虑边界条件,能够高效解决该问题,适用于实际工作中的路径规划和出行问题。 ### 回答3: 多段图的最短路径问题是指在由多个阶段构成的有向加权图中,从一个起点到达终点最短路径问题。这种问题在很多实际问题中经常出现,如物流运输、城市规划等方面都需要对多段图的最短路径进行求解。 动态规划作为一种有效并且广泛使用的求解多段图最短路径问题算法,具有以下几个步骤: 第一步:将图分为多个阶段。 第二步:定义状态。状态的定义要根据问题的实际情况来定,例如以第i个点为起点到第j个点为终点时的最短路径长度为状态。 第三步:推导状态转移方程。对于每一个阶段 i,求解出从起点到达该阶段所有点的最短路径,然后根据这个结果推导出到达下一个阶段 i+1 所要经过的边的最短路径。状态转移方程的求解可以使用贪心策略,即对于每个状态,选择到达下一个阶段的费用最小的路径。 第四步:求解最优解。最终的目标是要找到从起点终点的最短路径长度,因此可以通过求解从起点到达终点的最短路径长度来实现。 在实现上,我们可以先将多段图表示为邻接矩阵或邻接表的形式,然后逐个按照阶段进行求解。在求解的过程中需要使用记录表来记录每个点的最短路径以及最短路径长度,以便于后面的状态转移方程的计算和最优解的求解。 总结:多段图的最短路径问题是一个经典的动态规划问题,其求解需要进行多个阶段的计算和状态转移方程的推导,通过实现在动态规划算法框架下,可以求得最短路径长度,为实际问题的求解提供了非常有力的工具。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值