题目链接:
http://poj.org/problem?id=3009
题意:
给出n*m的图,给出起点和终点,里面有墙,有一个球从起点出发,只能走上下左右四个方向,如果即将撞墙会在墙前停下,墙会被破坏,然后可以重新选择方向,这样算走了一步。
如果能在十步内走到终点(终点不一定刚好停下时达到,如果移动中遇到,也算是走到终点),输出达到终点的最小结果。
如果不能走到终点或者大于十步才能走到,输出-1。
分析:
注意一下几点:
1.不能越界
2.必须周围不是墙才能走,不能直接把墙破坏,至少要走一步才能把墙破坏。
3.中途遇到终点就可以马上停下。
4.如果该方向路上没有墙直接走出了界,那么就不能选择这个方向(直接return)。
很久没写dfs,感觉写这种程度的搜索都很费力,建议以后写搜索前先分析好,不要边写边想。
代码注意以下几点:
1.dfs求最优答案最好把最优答案定为全局变量,然后在搜到终点时更新答案。
2.尽量精简以下代码,用一个数组去表示方向。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#define inf 99999999
using namespace std;
int w,h;
int G[30][30];int beginx, beginy, endx, endy;
int ans;
void dfs(int x, int y, int step)
{
if(step > 10)
{
return;
}
int tx,ty;
if(G[x][y+1] != 1 && y + 1 <= w)
{
tx = x; ty = y;
while(G[tx][ty]==0 && ty + 1<=w)
{
ty++;
if(G[tx][ty] == 3)
{
ans = min(step,ans);
return;
}
}
// 将碰撞的砖块化为0,回溯时候再化为1
if(G[tx][ty] == 1)
{
G[tx][ty] = 0;
dfs(tx,ty-1,step+1);
G[tx][ty] = 1;
}
}
if(G[x-1][y] != 1 && x-1 >= 1)
{
tx = x; ty = y;
while(G[tx][ty]==0 && tx-1>=1)
{
tx--;
if(G[tx][ty] == 3)
{
ans = min(step,ans);
return;
}
}
if(G[tx][ty] == 1)
{
G[tx][ty] = 0;
dfs(tx+1,ty,step+1);
G[tx][ty] = 1;
}
}
if(G[x][y-1] != 1 && y-1 >= 1)
{
tx = x; ty = y;
while(G[tx][ty]==0 && ty-1>=1)
{
ty--;
if(G[tx][ty] == 3)
{
ans = min(step,ans);
return;
}
}
if(G[tx][ty] == 1)
{
G[tx][ty] = 0;
dfs(tx,ty+1,step+1);
G[tx][ty] = 1;
}
}
if(G[x+1][y] != 1 && x+1 <= h)
{
tx = x; ty = y;
while(G[tx][ty]==0 && tx+1 <= h)
{
tx++;
if(G[tx][ty] == 3)
{
ans = min(step,ans);
return;
}
}
if(G[tx][ty] == 1)
{
G[tx][ty] = 0;
dfs(tx-1,ty,step+1);
G[tx][ty] = 1;
}
}
}
int main()
{
while(scanf("%d %d", &w, &h) && w != 0 && h != 0)
{
memset(G,-1,sizeof(G));
for(int i = 1; i <= h; i++)
{
for(int j = 1; j <= w; j++)
{
int t;
scanf("%d", &t);
if(t== 2)
{
beginx = i;
beginy = j;
G[i][j] = 0;
}
else if(t == 3)
{
endx = i;
endy = j;
G[i][j] = t;
}
else G[i][j] = t;
}
}
ans = inf;
dfs(beginx, beginy, 1);
if(ans == inf)
{
printf("-1\n");
}
else printf("%d\n",ans);
}
}
贴一个别人写的86行代码,学习一下dfs的代码风格。
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
const int Max = 20 + 10;
int map[Max][Max];
int dir[4][2] = {{-1,0},{0,-1},{1,0},{0,1}}; //0上,1左,2下,3右
int flag; //标记是否找到解
int minStep;
int w,h;
void dfs(int x, int y, int step)
{
int nx,ny;
int tx,ty;
int px,py;
if(step > 10)
{
return;
}
if(map[x][y] == 3)
{
minStep = min(minStep, step);
return;
}
for(int i=0; i<4; i++)
{
tx = x + dir[i][0];
ty = y + dir[i][1];
nx = x;
ny = y;
while(tx >= 0 && tx < h && ty >= 0 && ty < w && map[tx][ty] != 1) //预判下一步
{
nx += dir[i][0];
ny += dir[i][1];
if(map[nx][ny] == 3)
{
minStep = min(minStep, step);
return;
}
tx = nx + dir[i][0];
ty = ny + dir[i][1];
if(tx < 0 || tx >= h || ty < 0 || ty >= w) //忘记加这句就会错!!
break; //如果下一个位置越界,就直接break跳出,不进行后面的深搜,越界会直接跳到方向循环中,进行改变方向~
if(map[tx][ty] == 1) //没有越界就要判断是不是遇到墙了,遇到墙就停止滑动,开始进行深搜
{
map[tx][ty] = 0; //消除障碍
dfs(nx, ny, step+1);
map[tx][ty] = 1; //重建障碍
}
}
}
}
int main()
{
int sx,sy;
while(scanf("%d %d",&w,&h) != EOF && w != 0 && h != 0)
{
minStep = 10000;
for(int i=0; i<h; i++)
{
for(int j=0; j<w; j++)
{
scanf("%d",&map[i][j]);
if(map[i][j] == 2) //起点
{
sx = i;
sy = j;
}
}
}
dfs(sx, sy, 1);
if(minStep == 10000)
cout<<"-1"<<endl;
else
cout<<minStep<<endl;
}
return 0;
}