1014 Problem N

1014 Problem N

题意:我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分。

思路:先分析下直线分割平面的情况,增加第n条直线的时候,跟之前的直线最多有n-1个交点,此时分出的部分多出了(n-1)+1;折线也是同理,f(1)=2,f(2)=7,先画好前面n-1条折线,当增加第n条拆线时,此时与图形新的交点最多有2*2(n-1)个,所以分出的部分多出了2*2(n-1)+1   所以推出f(n)=f(n-1)+4*(n-1)+1,n>=3。

感想:折线分割平面,需要先去借助直线分割平面来分析。

#include<iostream>

using namespace std;

int main(){

   int c,i,n;

   long long f[10001];

   cin>>c;

   while(c--){

       cin>>n;

       f[1]=2;

       f[2]=7;

       for(i=3;i<=n;i++)

            f[i]=f[i-1]+4*(i-1)+1;

       cout<<f[n]<<endl;

    }

   return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值