http://acm.hdu.edu.cn/showproblem.php?pid=2050
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分。
解题思路:1递推递推,先分析下直线分割平面的情况,增加第n条直线的时候,跟之前的直线最多有n-1个交点,此时分出的部分多出了
(n-1)+1;
2折线也是同理,f(1)=2,f(2)=7,先画好前面n-1条折线,当增加第n条拆线时,此时与图形新的交点最多有2*2(n-1)个,所以分出的部分多出了2*2(n-1)+1 所以推出f(n)=f(n-1)+4*(n-1)+1,n>=3
#include <stdio.h>
int main()
{
int n,i,k,j;
__int64 a[10010];
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d",&k);
a[1]=2;
for(j=2;j<=k;j++)
a[j]=a[j-1]+4*(j-1)+1;
printf("%I64d/n",a[k]);
}
}