[bzoj3720]Gty的妹子树【树分块】

【题目链接】
  http://www.lydsy.com/JudgeOnline/problem.php?id=3720
【题解】
  按dfs序树分块的模板题。
  每个节点的子树在dfs序中一定为一串连续的区间,那我们对dfs序分块就行了,每个块内元素按大小排序。查询时暴力找边界上的块,中间的块二分一下。修改时暴力维护大小顺序,插入时插在它的父亲后(dfs序为它的父亲+1),然后暴力修改当前块的dfs序。
  复杂度O(nnlogn)O(nnlogn) 可以修改块的大小使复杂度更优。
  

/* --------------
    user Vanisher
    problem bzoj-3720 
----------------*/
# include <bits/stdc++.h>
# define    ll      long long
# define    inf     0x3f3f3f3f
# define    N       60010
# define    K       1001
using namespace std;
int read(){
    int tmp=0, fh=1; char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') fh=-1; ch=getchar();}
    while (ch>='0'&&ch<='9'){tmp=tmp*10+ch-'0'; ch=getchar();}
    return tmp*fh;
}

struct Edge{
    int data,next;
}e[N*2];
struct node{
    int id,p;
}k[K][K];
int w[N],nex[K],n,T,now,kdep[K],num,size[K],dep[N],nowdep,p[N],dad[N],head[N],place;
bool cmpw(node x, node y){
    return w[x.id]<w[y.id];
}
bool cmpp(node x, node y){
    return x.p<y.p;
}
void build(int u, int v){
    e[++place].data=v; e[place].next=head[u]; head[u]=place;
    e[++place].data=u; e[place].next=head[v]; head[v]=place;
}
void dfs(int x, int fa){
    if (now==T){
        nex[num]=num+1;
        size[num]=now;
        sort(k[num]+1,k[num]+size[num]+1,cmpw);
        kdep[num]=nowdep;
        now=0; nowdep=inf; num++;
    }
    k[num][++now]={x,now}; p[x]=num; dad[x]=fa;
    dep[x]=dep[fa]+1, nowdep=min(dep[x],nowdep);
    for (int ed=head[x]; ed!=0; ed=e[ed].next)
        if (e[ed].data!=fa)
            dfs(e[ed].data,x);
}
int query(int x, int y){
    int ans=0, l, r=size[p[x]], ed;

    for (int i=1; i<=size[p[x]]; i++)
        if (k[p[x]][i].id==x) l=k[p[x]][i].p;
    for (int i=1; i<=size[p[x]]; i++)
        if (dep[k[p[x]][i].id]<=dep[x]&&k[p[x]][i].p>l)
            r=min(k[p[x]][i].p-1,r);
    for (int i=1; i<=size[p[x]]; i++)
        if (k[p[x]][i].p>=l&&k[p[x]][i].p<=r)
            if (w[k[p[x]][i].id]>y) ans++;

    if (r!=size[p[x]]) return ans;
    for (ed=nex[p[x]]; kdep[ed]>dep[x]; ed=nex[ed]){
        int pl=1, pr=size[ed], now=pr+1;
        while(pl<=pr){
            int mid=(pl+pr)/2;
            if (w[k[ed][mid].id]>y)
                now=mid, pr=mid-1;
                else pl=mid+1;
        }
        ans=ans+size[ed]+1-now;
    } 

    l=1, r=size[ed];
    for (int i=1; i<=size[ed]; i++)
        if (dep[k[ed][i].id]<=dep[x])
            r=min(r,k[ed][i].p-1);
    for (int i=1; i<=size[ed]; i++)
        if (k[ed][i].p>=l&&k[ed][i].p<=r)
            if (w[k[ed][i].id]>y) ans++;
    return ans;
}
void modify(int x, int y){
    w[x]=y;
    for (int i=1; i<=size[p[x]]; i++)
        if (k[p[x]][i].id==x){
            for (int j=i+1; j<=size[p[x]]&&w[k[p[x]][j].id]<w[k[p[x]][j-1].id]; j++)
                swap(k[p[x]][j],k[p[x]][j-1]);
            for (int j=i-1; j>0&&w[k[p[x]][j].id]>w[k[p[x]][j+1].id]; j--)
                swap(k[p[x]][j],k[p[x]][j+1]);
            return; 
        }
} 
void cut(int x){
    int now=size[x]/2;
    sort(k[x]+1,k[x]+size[x]+1,cmpp);
    size[++num]=now; size[x]=now;
    nex[num]=nex[x]; nex[x]=num;
    kdep[x]=inf, kdep[num]=inf;
    for (int i=1; i<=now; i++){
        k[num][i]=k[x][i+now];
        k[num][i].p-=now;
        kdep[x]=min(kdep[x],dep[k[x][i].id]);
        kdep[num]=min(kdep[num],dep[k[num][i].id]);
        p[k[num][i].id]=num;
    }
    sort(k[x]+1,k[x]+size[x]+1,cmpw);
    sort(k[num]+1,k[num]+size[num]+1,cmpw);
}
void extend(int x, int y){
    w[++n]=y; T=(int)sqrt(n)+1; dep[n]=dep[x]+1;
    for (int i=1; i<=size[p[x]]; i++)
        if (k[p[x]][i].id==x){
            for (int j=1; j<=size[p[x]]; j++)
                if (k[p[x]][j].p>k[p[x]][i].p)
                    k[p[x]][j].p++;
            k[p[x]][++size[p[x]]]={n,k[p[x]][i].p+1}; p[n]=p[x];
            for (int j=size[p[x]]-1; j>0&&w[k[p[x]][j].id]>w[k[p[x]][j+1].id]; j--)
                swap(k[p[x]][j],k[p[x]][j+1]);
            if (size[p[x]]>=2*T) cut(p[x]);
            return;
        }
}
int main(){
    n=read(); T=(int)sqrt(n)+1;
    for (int i=1; i<n; i++)
        build(read(),read());
    for (int i=1; i<=n; i++)
        w[i]=read();
    num=1; now=0; nowdep=inf;
    dfs(1,0); 
    size[num]=now; kdep[num]=nowdep; 
    sort(k[num]+1,k[num]+size[num]+1,cmpw);
    int m=read(), lastans=0;
    for (int i=1; i<=m; i++){
        int opt=read(),x=read(),w=read();
        x=x^lastans, w=w^lastans;
        if (opt==0){
            lastans=query(x,w);
            printf("%d\n",lastans);
        }
        if (opt==1) modify(x,w);
        if (opt==2) extend(x,w);
    }
    return 0;
}

转载于:https://www.cnblogs.com/Vanisher/p/9135972.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值