UVA 113

Power of Cryptography 

Background

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers modulo functions of these primes.  Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be of only theoretical interest.

This problem involves the efficient computation of integer roots of numbers.

The Problem

Given an integer  tex2html_wrap_inline32  and an integer  tex2html_wrap_inline34  you are to write a program that determines  tex2html_wrap_inline36 , the positive  tex2html_wrap_inline38  root of p.  In this problem, given such integers n and p, p will always be of the form  tex2html_wrap_inline48  for an integer k (this integer is what your program must find).

The Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself.  For all such pairs  tex2html_wrap_inline56tex2html_wrap_inline58  and there exists an integer ktex2html_wrap_inline62  such that  tex2html_wrap_inline64 .

The Output

For each integer pair n and p the value  tex2html_wrap_inline36  should be printed, i.e., the number k such that  tex2html_wrap_inline64 .

Sample Input

2
16
3
27
7
4357186184021382204544

Sample Output

4
3
1234
水题一个,最主要的问题就是数据量的控制,这里用的是double,其实long double应该也可以,还没有尝试,总之看代码吧:
#include<stdio.h>
#include<math.h>

int main()
 {
  double n, p;
  while(scanf("%lf%lf", &n, &p) != EOF)
  {
   printf("%.0lf\n", pow(p, 1/n));
  }
  return 0;
 }
View Code

 

转载于:https://www.cnblogs.com/LOB104-zhanglei/articles/3197068.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值