哈佛大学一位教授提出了这样一个博弈模型:
有三个枪手,第一个枪手A的命中率是80%, B是60%,C是40%。他们同时举枪瞄准、同时射击另两个人中的一个,要尽可能消灭对手,每个人一次机会,一颗子弹,目标是努力使自己活下来。谁活下来的可能性最大?如果你认为枪法最准的A胜出,那么你就错了。
我们来看,如果你是A,你毫无疑问的会瞄准对你威胁最大的B,而B也会瞄准对他威胁最大的A,而C则也可能瞄准A,那么三个人存活的概率都是多少呢?
A = 100% - 60% - (1-60%)* 40% = 24%
B = 100% - 80% = 20% (因为命中率为80%的A在瞄准他)
C = 100% (因为没有人瞄准他)
原来,枪法最不准的C竟然活了下来。
那么,换一种玩法呢?
如果三个人轮流开枪,谁会生存下来?
如果A先开枪的话,A还是会先打B,如果B被打死了,则下一个开枪的就是C,那么此时A生存的概率为60%,而C依然是100%(他开过枪后A没有子弹了,游戏结束);如果打不死B,则下一轮在B开枪的时候一定会全力回击,A的生存率为40%,不管是否打死A,第三轮AB的命运都掌握在C的手里了。
那么,如果游戏规则规定必须由C先开枪,如果你是C怎么才能让自己活下来呢?
答案是胡乱开一枪,只要不针对AB任何一人即可。
当C开枪完毕,AB还是会陷入互相攻击的困境。