枪手博弈

哈佛大学一位教授提出了这样一个博弈模型:

    有三个枪手,第一个枪手A的命中率是80%, B是60%,C是40%。他们同时举枪瞄准、同时射击另两个人中的一个,要尽可能消灭对手,每个人一次机会,一颗子弹,目标是努力使自己活下来。谁活下来的可能性最大?如果你认为枪法最准的A胜出,那么你就错了。

 

    我们来看,如果你是A,你毫无疑问的会瞄准对你威胁最大的B,而B也会瞄准对他威胁最大的A,而C则也可能瞄准A,那么三个人存活的概率都是多少呢?

    A = 100% - 60% - (1-60%)* 40% = 24%

    B = 100% - 80% = 20%  (因为命中率为80%的A在瞄准他)

    C = 100%  (因为没有人瞄准他)

    原来,枪法最不准的C竟然活了下来。

    那么,换一种玩法呢?

   

    如果三个人轮流开枪,谁会生存下来?

    如果A先开枪的话,A还是会先打B,如果B被打死了,则下一个开枪的就是C,那么此时A生存的概率为60%,而C依然是100%(他开过枪后A没有子弹了,游戏结束);如果打不死B,则下一轮在B开枪的时候一定会全力回击,A的生存率为40%,不管是否打死A,第三轮AB的命运都掌握在C的手里了。

 

    那么,如果游戏规则规定必须由C先开枪,如果你是C怎么才能让自己活下来呢?

    答案是胡乱开一枪,只要不针对AB任何一人即可。

    当C开枪完毕,AB还是会陷入互相攻击的困境。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值