使用 spring-ai-openai-spring-boot-starter,SpringBoot无缝整合DeepSeek API实战指南

前言:

本人为完成利用 spring-ai-openai-spring-boot-starterspring整合deepseek的任务(因为还可以用本地部署的方式),在博客和AI工具中来回跳动,然而最终还是在官网找到了答案,完成过程中犯错无数,因此挥毫书就本文,希望能给大家带来帮助。

一:环境准备

以下是本人的环境,或许不是最优,但确保无误

1.jdk版本:17(最好是17+)

2.maven:3.9.9

3.springboot:3.3.9(注意:springboot版本要求为3.2.x和3.3.x)

4.idea用的是2024版的,大家用新版本的

二:依赖配置

依赖勾选:

Web -> Spring Web

Al -> OpenAI

(其实我们是将deepseek伪装成 OpenAI,DeepSeek 提供了 OpenAI 兼容模式。)

三:核心配置

在application.properties文件中,必须配置如下环境变量:前提是你已经创建了api key(api-key只有创建时才能复制,也要注意不能让别人看到,不然他可能会花你的key)

​# DeepSeek的OpenAI式端点
spring.ai.openai.base-url=https://api.deepseek.com

# DeepSeek API KEY
spring.ai.openai.api-key=#你的api-key

# 配置AI大模型
spring.ai.openai.chat.options.model=#你选择的模型

# 具体选择如图所示

​

API文档地址:https://api-docs.deepseek.com/zh-cn/

四:实战测试

在controller包下新建ChatController:

@RestController
public class ChatController {

    private final OpenAiChatModel chatModel;

    @Autowired
    public ChatController(OpenAiChatModel chatModel) {
        this.chatModel = chatModel;
    }

    @GetMapping("/ai/generate")
    public Map generate(@RequestParam(value = "message", defaultValue = "who is the first emperor of China?") String message) {
        return Map.of("generation", this.chatModel.call(message));
    }

    @GetMapping("/ai/generateStream")
    public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        Prompt prompt = new Prompt(new UserMessage(message));
        return this.chatModel.stream(prompt);
    }
    
    //default value可以自己取
}

之后,启动项目(注意:要购买token,不需要很贵,花1块钱就行了,可以在00:30~08:30购买,有优惠哦。),在apifox或者postman(这里推荐apifox,有简体中文,而且好像是中国人开发的),新建快捷请求,输入对应的路径即可,这里,也给大家演示一下:

总结:

落笔至此,本篇完结。其实这并不算难,只是细节需要注意,pom文件的依赖,包括版本问题,以及properties配置写错一个字都可能导致项目的运行失败。所以推荐大家多去看官网,多看官网,多看官网(可以安装插件方便阅读)。本篇spring的官网地址:DeepSeek Chat :: Spring AI Referencehttps://docs.spring.io/spring-ai/reference/api/chat/deepseek-chat.html

创作不易,希望可以帮到大家,有什么问题也可以在评论中指出,看到了就会回。

### 使用 `spring-ai-deepseek-spring-boot-starter` 进行集成和配置 #### 添加依赖 为了使用 Spring AI DeepSeek 功能,在项目的 `pom.xml` 文件中需引入特定的 Maven 依赖: ```xml <dependency> <groupId>io.spring.ai</groupId> <artifactId>spring-ai-openai-spring-boot-starter</artifactId> <version>${版本号}</version> </dependency> <dependency> <groupId>io.spring.ai</groupId> <artifactId>spring-ai-ollama-spring-boot-starter</artifactId> <version>${版本号}</version> </dependency> ``` 请注意替换 `${版本号}` 为实际发布的版本号[^1]。 #### 配置文件设置 在 `application.properties` 或者 `application.yml` 中添加必要的配置参数,以便连接至 DeepSeek API 并指定所使用的模型。以下是 YAML 格式的示例配置: ```yaml spring: ai: openai: api-key: your-apikey # 替换成自己的API密钥 base-url: https://api.deepseek.com # DeepSeek服务的基础URL chat: options: model: deepseek-chat # 对话模型名称 ``` 上述配置定义了访问 DeepSeek 所必需的服务端点以及认证信息,并指定了要使用的聊天机器人模型[^2]。 #### 编写业务逻辑代码 完成以上准备工作之后,可以在应用程序内通过注入相应的客户端对象来调用 DeepSeek 提供的功能接口。例如创建一个简单的控制器类用于发起请求并处理响应数据: ```java @RestController @RequestMapping("/chat") public class ChatController { private final OpenAiClient openAiClient; public ChatController(OpenAiClient openAiClient) { this.openAiClient = openAiClient; } @PostMapping public ResponseEntity<String> sendMessage(@RequestBody String message){ var response = openAiClient.createChatCompletion( CreateChatCompletionRequest.builder() .messages(List.of(new Message("user",message), new Message("assistant",""))) .model("deepseek-chat") // 使用DeepSeek提供的对话模型 .build()); return ResponseEntity.ok(response.getChoices().get(0).getMessage().getContent()); } } ``` 这段代码展示了如何利用 `OpenAiClient` 发送消息给 DeepSeek 聊天模型,并获取返回的结果作为 HTTP 响应发送回前端页面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值