目录
1.问题描述:
汉诺塔问题是一个经典的问题。汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。问应该如何操作?
2.代码实现:
#include<stdio.h>
void move(char A,char B)
{
printf("%c >> %c\n",A,B);
}
void han(char A,char B,char C,int n)
{
if(n==1)
move(A,C);
else
{
han(A,C,B,n-1);
move(A,C);
han(B,A,C,n-1);
}
}
int main()
{
int n;
scanf("%d",&n);
han('A','B','C',n);
return 0;
}
3.代码分析:
要让n个圆盘从A移到C;只需要先把n-1个圆盘从A移到B;然后中间步骤把第n根从A移到C;最后把n-1个从B移到C就可以了;
1个圆盘时:
A>>C
2个圆盘时:
A>>B A>>C B>>C
3个圆盘时:
第一步:A>>C A>>B C>>B
第二步:A>>C
第三步:B>>A B>>C A>>C
比较2个圆盘时和3个圆盘的第一步,可以发现:如果把3个圆盘的第一步的C变成B,B变成C;那就一模一样。这是因为2个圆盘的时候,是把2个圆盘从A到C;3个圆盘的第一步是把2两个圆盘从A到B;所以才是han(A,C,B);
而第三部是C盘不变,把2个圆盘从B到C,而不是A到C;所以交换A,B;然后是han(B,A,C);
一直以这样的思想就能达到目的;
我们的第五年开始啦!