Codeforces Round 1023 (Div.2)

比赛链接:CF1023

A. LRC and VIP

  • 如果 a a a 数组全部值都相同,则无法构造出满足条件的 B B B, C C C 序列。
  • 否则,将最大值放到 C C C 序列中,其余元素放到 B B B 序列中。

时间复杂度: O ( n ) O(n) O(n)

#include <bits/stdc++.h>
using namespace std;

const int N = 105;
int n, a[N];

void solve() {
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i];
    int maxm = 0, minm = INT_MAX;
    for (int i = 1; i <= n; i++)
        maxm = max(maxm, a[i]), minm = min(minm, a[i]);
    if (maxm == minm) {
        cout << "NO\n";
        return;
    }
    cout << "YES\n";
    for (int i = 1; i <= n; i++) cout << (1 + (a[i] == maxm)) << " ";
    cout << "\n";
}

int main() {
    ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
    int T;
    cin >> T;
    while (T--) solve();
    return 0;
}

B. Apples in Boxes

Jerry 获胜条件:

  • 当前最大值 − 1 - 1 1 后,剩余所有元素的最大值 − - 最小值 > k > k >k
  • 操作一次后,剩余所有元素数量的和为偶数。

剩余情况都是 Tom 获胜。

时间复杂度: O ( n ) O(n) O(n)

#include <bits/stdc++.h>
using namespace std;

#define int long long

const int N = 1e5 + 10;
int n, k, a[N];

void solve() {
    cin >> n >> k;
    int maxm = 0, minm = LLONG_MAX, sum = 0, maxpos = 0;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        sum += a[i];
        if (a[i] > maxm) maxm = a[i], maxpos = i;
    }
    a[maxpos]--;
    maxm = 0, minm = LLONG_MAX;
    for (int i = 1; i <= n; i++)
        maxm = max(maxm, a[i]), minm = min(minm, a[i]);
    if (maxm - minm > k || sum % 2 == 0) cout << "Jerry\n";
    else cout << "Tom\n";
}

signed main() {
    ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
    int T;
    cin >> T;
    while (T--) solve();
    return 0;
}

C. Maximum Subarray Sum

  • 如果 s i s_i si 全为 1,无法进行操作,利用 d p dp dp 找出最大连续子数组,并且判断是否等于 k k k
  • 如果存在 s i = 0 s_i = 0 si=0,根据题目数据范围,只需要一个位置就可以让最大连续子数组的值等于 k k k
    • 找到第一个 s i = 0 s_i = 0 si=0 的位置,算出这个位置前面的一段最大后缀 s u f suf suf,跟这个位置往后的最大前缀 p r e pre pre,这个位置的 a i a_i ai 直接赋值为 k − p r e − s u f k - pre - suf kpresuf
    • 第二个 s i = 0 s_i = 0 si=0 的位置,将 a i a_i ai 赋值为 − 1 0 18 -10^{18} 1018,其余位置不需要改变。

时间复杂度: O ( n ) O(n) O(n)

#include <bits/stdc++.h>
using namespace std;

#define int long long

const int N = 2e5 + 10;
int n, k, a[N], dp[N];
string s;

void solve() {
	cin >> n >> k >> s;
	s = " " + s;
	for (int i = 1; i <= n; i++) cin >> a[i];
	int pos1 = 0;
	for (int i = 1; i <= n; i++) {
		if (s[i] == '0') {
			pos1 = i;
			break;
		}
	}
	if (pos1 == 0) {
		int maxm = 0;
		for (int i = 1; i <= n; i++)
			dp[i] = max(dp[i - 1] + a[i], a[i]), maxm = max(maxm, dp[i]);
		if (maxm == k) {
			cout << "Yes\n";
			for (int i = 1; i <= n; i++) cout << a[i] << " ";
			cout << "\n";
		} else cout << "No\n";
		return;
	}
	int maxm = 0, r = 1;
	for (int i = 1; i <= n; i++) dp[i] = 0;
	for (int l = 1; l <= n; l++) {
		r = l;
		while (r <= n && s[r] != '0') {
			dp[r] = max(dp[r - 1] + a[r], a[r]);
			maxm = max(maxm, dp[r]);
			r++;
		}
		l = r;
	}
	if (maxm > k) {
		cout << "No\n";
		return;
	}
	int sum = 0, pre = 0, suf = 0;
	for (int i = pos1 - 1; i >= 1; i--) {
		sum += a[i];
		pre = max(pre, sum);
	}
	sum = suf = 0;
	int pos2 = 0, pos = pos1;
	for (int i = pos1 + 1; i <= n; i++) {
		sum += a[i];
		if (suf < sum) {
			pos = i;
			suf = sum;
		}
		if (s[i] == '0') {
			pos2 = i;
			break;
		}
	}
	a[pos1] = k - suf - pre;
	if (pos2) {
		for (int i = pos + 1; i <= n; i++) {
			if (s[i] == '0') a[i] = -1e18;
		}
	}
	cout << "Yes\n";
	for (int i = 1; i <= n; i++) cout << a[i] << " ";
	cout << "\n";
}

signed main() {
	ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
	int T;
	cin >> T;
	while (T--) solve();
	return 0;
}

D. Apple Tree Traversing

可以发现按照字典序排列的第一关键字是 d d d,也就是路径长度,所以只需要每一次在剩余森林的每一棵树中找出直径,并且存下这条直径的长度以及端点,最后按照字典序排列即可。

时间复杂度: O ( n n ) O(n \sqrt{n}) O(nn )

  • 每一次找的直径一定会比前面的短,所以最多需要找 n \sqrt{n} n 次直径。
#include <bits/stdc++.h>
using namespace std;

const int N = 150005;
int n, pre[N], used[N], d[N], head[N], num = 0, tar;
struct edge { int to, nxt; } e[N << 1];
array<int, 3> ans[N];

inline int read() {
    int x = 0, f = 1; char c = getchar();
    while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); }
    while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}

void addEdge(int u, int v) { e[++num] = (edge){ v, head[u] }, head[u] = num; }

void dfs(int u, int fa) {
    for (int i = head[u]; i; i = e[i].nxt) {
        int v = e[i].to;
        if (v == fa || used[v]) continue;
        d[v] = d[u] + 1, pre[v] = u;
        if (d[v] > d[tar] || (d[v] == d[tar] && tar < v)) tar = v;
        dfs(v, u);
    }
}

void solve() {
    n = read();
    for (int i = 1; i <= n; i++) head[i] = used[i] = 0;
    num = 0;
    for (int i = 1; i < n; i++) {
        int u = read(), v = read();
        addEdge(u, v), addEdge(v, u);
    }
    int m = 0;
    tar = 0;
    while (1) {
        int flag = 0;
        for (int i = 1; i <= n; i++)
            if (!used[i]) { flag = i; break; }
        if (!flag) break;
        d[flag] = 1;
        tar = flag;
        dfs(tar, 0);
        int st = tar;
        d[tar] = 1;
        dfs(tar, 0);
        int ed = tar;
        for (int i = ed; i != st; i = pre[i]) used[i] = 1;
        used[st] = 1;
        ans[++m] = array<int, 3>({ d[ed], max(st, ed), min(st, ed) });
    }
    sort(ans + 1, ans + m + 1, greater<array<int, 3>>());
    for (int i = 1; i <= m; i++) printf("%d %d %d ", ans[i][0], ans[i][1], ans[i][2]);
    putchar('\n');
}

int main() {
    // freopen("D.out", "w", stdout);
    int T = read();
    while (T--) solve();
    return 0;
}

E. Ain and Apple Tree

  • 可以发现,当构造出来的树是一条链的时候答案最大,答案为 ∑ i = 0 n − 1 i ⋅ ( n − i − 1 ) \sum_{i = 0}^{n - 1}i \cdot (n - i - 1) i=0n1i(ni1)
    • 如果 k > ∑ i = 0 n − 1 i ⋅ ( n − i − 1 ) + 1 k > \sum_{i = 0}^{n - 1}i \cdot (n - i - 1) + 1 k>i=0n1i(ni1)+1,则无解。
  • 将一条链状的树的最深节点往上移到比其深度小 x x x 的节点的地方时,最后答案会减小 1 + 2 + … + x − 1 = x ( x − 1 ) 2 1 + 2 + \ldots + x - 1 = \frac{x(x - 1)}{2} 1+2++x1=2x(x1)
  • 我们可以将要构造的树初始化为链状,然后将最深节点依次上移,直到 ∣ ∑ i = 1 n ∑ j = i + 1 n d e p ( l c a ( i , j ) ) − k ∣ < 1 |\sum_{i = 1}^n\sum_{j = i + 1}^ndep(lca(i, j)) - k| < 1 i=1nj=i+1ndep(lca(i,j))k<1

时间复杂度: O ( n ) O(n) O(n)

#include <bits/stdc++.h>
using namespace std;

#define int long long 

int n, k;

void solve() {
	cin >> n >> k;
	int maxm = 0;
	for (int i = 0; i < n; i++) maxm += i * (n - i - 1);
	if (maxm < k - 1) {
		cout << "No\n";
		return;
	}
	k = maxm - k;
	vector<vector<int>> g(n + 1);
	int h = n - 1;
	for (int i = n - 1; i; i--)
		if (k >= i * (i - 1) / 2) {
			g[h - i].push_back(h);
			h--;
			k -= i * (i - 1) / 2;
		}
	for (int i = 0; i < h; i++) g[i].push_back(i + 1);
	cout << "Yes\n";
	for (int i = 0; i < n; i++) {
		for (int v : g[i]) cout << i + 1 << " " << v + 1 << "\n"; 
	}
}

signed main() {
	ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
	int T;
	cin >> T;
	while (T--) solve();
	return 0;
}

F1. Cycling (Easy Version)

  • a [ x , y ) > = a y + 1 a_{[x,y)} >= a_y + 1 a[x,y)>=ay+1 时,每次将 y y y 前移一定不会使答案更劣,因为这种操作的花费为 a y + 1 a_y + 1 ay+1,其中 1 1 1 是前移的花费。
  • 如果 a y a_y ay 要后移到位置 z z z,Leo 超越到位置 x x x 的花费为 c o s t [ z + 1 , n ] + ( z − y ) ⋅ a y + ( z − y ) + ( z − x − 1 ) cost_{[z + 1, n]} + (z - y) \cdot a_y + (z - y) + (z - x - 1) cost[z+1,n]+(zy)ay+(zy)+(zx1)

时间复杂度: O ( n 2 ) O(n^2) O(n2)

#include <bits/stdc++.h>
using namespace std;

#define int long long

const int N = 5e3 + 10;
int n, a[N], dp[N];

void solve() {
	cin >> n;
	for (int i = 1; i <= n; i++) cin >> a[i], dp[i - 1] = LLONG_MAX;
	dp[n] = 0;
	for (int i = n - 1; i >= 0; i--) {
		int p = i + 1;
		for (int j = i + 1; j <= n; j++)
			if (a[j] < a[p]) p = j;
		for (int j = p; j <= n; j++)
			dp[i] = min(dp[i], dp[j] + 2 * (j - p) + (j - i) * a[p] + p - i - 1);
	}
	cout << dp[0] << "\n";
}

signed main() {
	ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
	int T;
	cin >> T;
	while (T--) solve();
	return 0;
}

时间复杂度: O ( n 2 ) O(n^2) O(n2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值