记录:那些封装成几行代码的OCR项目

一.介绍

简易流程: 输入图像 》检测文本 》截取文本 》识别文本 》输出
在这里插入图片描述

简单开发一些小工具,这几款ocr库相对使用起来简易;便于简易开发。

  • PaddleOCR— 适用于通用文本
  • cnocr+cnstd ——— 适用于文档文本
  • easyOCR —— 适用于通用文本
  • ddddocr ——— 适用于验证码
  • MuggleOCR ——— 适用于印刷文本,验证码
  • tesseractOCR —— 通用OCR(未测试)

二.环境依赖

  1. PaddleOCR
    基于paddlepaddle 与 paddlehub
pip install paddlepaddle
pip install paddlehub
  1. cnocr
    基于pytorch
pip install cnocr
pip install cnstd
  1. easyOCR
    基于pytorch
pip install easyocr
  1. dddddocr
pip install ddddocr
  1. MuggleOCR
    这里需要适用豆瓣源
pip install muggle-ocr -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
  1. 注意
    部分依赖可能安装过不去可去https://www.lfd.uci.edu/~gohlke/pythonlibs/下载whl,手动安装。

三.代码

  • cnocr

单独cnocr模块,只适合打印或文本格式。

import cv2
from cnocr import CnOcr

ocr = CnOcr()
img = './1.jpg'
img = cv2.imread(img)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  

res = ocr.ocr(gray)
print(res)

cnstd+cnocr 通用图片中的文字。

from cnstd import CnStd
from cnocr import CnOcr

std = CnStd()
cn_ocr = CnOcr()

box_info_list = std.detect('examples/taobao4.jpg')

for box_info in box_info_list:
    cropped_img = box_info['cropped_img']  # 检测出的文本框
    ocr_res = cn_ocr.ocr_for_single_line(cropped_img)
    print('ocr result: %s' % ''.join(ocr_res))
  • easyocr
 import easyocr

#指定文字模型
reader = easyocr.Reader(['ch_sim','en']) 
res = reader.readtext('./1.jpg')
print(res)
  • paddleocr
import paddlehub as hub
import cv2
#模型选择
ocr = hub.Module(name="chinese_ocr_db_crnn_mobile")
res = ocr.recognize_text(images=[cv2.imread('./12.jpg')],output_dir='result',visualization=True)

print(res)

  • ddddocr
import ddddocr
 
ocr=ddddocr.DdddOcr()
with open('test_img.png', 'rb') as f:
    img_bytes=f.read()
 
res=ocr.classification(img_bytes)
print(res)

  • MuggleOCR
# 导入包
import muggle_ocr

# 初始化;model_type 包含了 ModelType.OCR/ModelType.Captcha 两种,OCR能识别中文
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.OCR)

with open(r"test1.png", "rb") as f:
    b = f.read()
text = sdk.predict(image_bytes=b)
print(text)


# ModelType.Captcha 可识别4-6位验证码
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.Captcha)
with open(r"test1.png", "rb") as f:
    b = f.read()
text = sdk.predict(image_bytes=b)
print(text)

四.效果对比

原图:
请添加图片描述
easyocr输出:
请添加图片描述
paddleocr输出:
在这里插入图片描述
ddddocr贴张官方图:
在这里插入图片描述

  • 总结
    通用场景下还是paddleocr效果最好;cnocr更适合文本的图像;ddddocr与MuggleOCR相比,前者验证码效果更好一点。

五.参考

https://github.com/breezedeus/cnstd
https://github.com/breezedeus/cnocr
https://github.com/JaidedAI/EasyOCR
https://github.com/PaddlePaddle/PaddleOCR
https://github.com/sml2h3/ddddocr
https://www.cnblogs.com/pythonywy/p/13226330.html
https://pypi.org/project/muggle-ocr/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值