我的spark python 决策树实例

from numpy import array
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark import SparkContext
from pyspark.mllib.evaluation import BinaryClassificationMetrics

sc = SparkContext(appName="PythonDecisionTreeClassificationExample")
data = [
     LabeledPoint(0.0, [0.0]),
     LabeledPoint(1.0, [1.0]),
     LabeledPoint(0.0, [-2.0]),
     LabeledPoint(0.0, [-1.0]),
     LabeledPoint(0.0, [-3.0]),
     LabeledPoint(1.0, [4.0]),
     LabeledPoint(1.0, [4.5]),
     LabeledPoint(1.0, [4.9]),
     LabeledPoint(1.0, [3.0])
 ]
all_data = sc.parallelize(data) 
(trainingData, testData) = all_data.randomSplit([0.8, 0.2])

# model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {})
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
                                         impurity='gini', maxDepth=5, maxBins=32)
print(model)
print(model.toDebugString())
model.predict(array([1.0]))
model.predict(array([0.0]))
rdd = sc.parallelize([[1.0], [0.0]])
model.predict(rdd).collect()

predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)

  predictionsAndLabels = predictions.zip(testData.map(lambda lp: lp.label))

metrics = BinaryClassificationMetrics(predictionsAndLabels )
print "AUC=%f PR=%f" % (metrics.areaUnderROC, metrics.areaUnderPR)

testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / float(testData.count())
print('Test Error = ' + str(testErr))
print('Learned classification tree model:')
print(model.toDebugString())

# Save and load model
model.save(sc, "./myDecisionTreeClassificationModel")
sameModel = DecisionTreeModel.load(sc, "./myDecisionTreeClassificationModel")

 

转载于:https://www.cnblogs.com/bonelee/p/7151341.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值