还是jvm申请内存的失败并频繁GC问题

本文探讨了在AIX系统上使用IBM JDK时遇到的内存溢出问题,特别是内存碎片导致的频繁core dump现象。文章分析了Sun JDK与IBM JDK在垃圾回收策略上的差异,并介绍了IBM JDK 1.4.2版本中引入的pinnedFreeList算法以缓解内存碎片问题。
摘要由CSDN通过智能技术生成
今天逛论坛(ITPUB),发现了个2月份的帖子,正好,偶们的系统也要移植到AIX上,启发还是比较大,偶整理了下:
http://www.itpub.net/viewthread.php?tid=942211&extra=&page=1

通常情况下,频繁发生core dump是由于以下两类原因导致

1 内存泄漏

堆内存申请失败通常是由于系统中存在大量不能被GC操作所删除的对象,由于GC只删除没有引用指向的对象,所以,如果在编程的时候没有消除对过期对象的引用(将引用置为null),那么此过期对象就无法被删除。大量的过期对象会导致大量的堆内存被占用。这个问题大多 是程序员代码引起的。属于后天问题,是可以优化的。

2 内存碎片问题

通常情况下,对于Java虚拟机出现,只需要配置heap最大最小值,以及maxPermSize,但是这种情况仅限于SUN的Java虚拟机。对于IBM的JVM,情况就完全不一样

对于Sun的JVM来说,它的GC策略默认是复制、分代算法。也就是说,它会将heap分成不同的几个区,譬如Solaris JVM中最上面有两个大小相等的区。GC时刻,将一个区的存活对象复制到另外一个对等区,垃圾对象就算遗弃了。这样在heap里面,就不存在碎片问题。

另外Sun的JVM有单独的方法区,也就是Permanent Generation,方法区中保存的一般是Class对象,而不是普通的实例对象,也就是JVM的元数据。

IBM的JVM默认GC策略并没有采取复制、分代。这个可以从GC日志分析出来。它不像Sun的JVM那样,有个单独的方法区,它的方法区就放在Java Heap里面。在IBM的JVM里面,这些对象一般分配在称为k-cluster和p-cluster里(cluster又是属于Heap),而后者一般是临时在heap里面申请。并且,这些cluster是不能GC,或是被移动重排的(Compact过程)。这就导致Java Heap里面就如同蜂窝,但不同的蜂孔又不能合并,于是,当我们程序里面产生一个大对象,譬如2M的数组(数组必须分配在连续的内存区)时,就没有可分配空间了,于是就报告OOM。这些不能被移动的cluster之间的空隙就称为所谓的碎片。此时,JVM的Heap利用率可能不到50%。

再说一个细节,k-cluster能够存放1280个类对象,第一个p-cluster大小为16K,默认存放类似于JNI对象和线程对象等不能移动的对象(pinned),然后k-cluster中存放不下的类对象也会放在p-cluster中,第一个p-cluster满了之后,后续的p- cluster大小只有2K,一个类对象大小是256字节

内存碎片形成的原因如下:

在GC之后,JVM将无用的对象移除并重新排列,但是由于Class对象无法移除无法重新排列,所以会造成许多的内存碎片。尤其是使用了Spring、 Hibernate这些框架的情况下,这些框架经常通过反射创建实例,所以导致Class对象的数量大大增加,在内存中的位置更加不确定。
…………………………………………………………以下是版主的回答……………………………………………………………………

内容提要:
用户在使用WebSphere Application Server(以下简称WAS)运行自己应用的时候经常会碰到Out Of Memory的问题(简称OOM问题),其中很大一部分的情况是Java堆空间碎片问题引起的OOM问题。IBM JDK 1.4.2的版本中JDK对GC的行为做出了一定的改进。其中一些JDK参数的引进可以改善Java堆空间的碎片问题。
本文首先会给出IBM JDK 1.4.2中对于K簇(k-cluster)和P簇(p-cluster)工作模式的解释。然后在此基础上介绍JDK 1.4.2为解决碎片问题采取的新算法。最后,给出WAS中为改善Java堆空间碎片问题使用的JDK运行参数。

正文:
一、K簇和P簇
在Java堆空间中分配的内存对象通常是可以移动,如果垃圾回收程序(garbage collector)决定重新序列化堆空间的时候,可以四处移动这些对象。然而,有些对象永远或者临时无法移动。这些固定不动的对象就是常说的pin对象(pinned object)。
在IBM JDK 1.4.2中,垃圾回收程序首先会分配一个K簇作为堆空间底部的第一个对象。K簇是专门用来存储“类块”(class block)的区域。K簇可以容纳1280个类块条目。每个类块的大小是256个字节。紧接着垃圾回收程序会分配一个P簇作为堆空间中的第2个对象。P簇是用来存储pin对象的区域。第一个P簇的默认大小为16KB。
当K簇满了的情况下,垃圾回收程序在P簇中继续分配类块。当P簇满了的情况下,垃圾回收程序会分配一个大小为2KB的新P簇。由于这些新的P簇可以被分配到任何地方而且又不能被移动,这就造成了碎片的问题。
二、pinnedFreeList算法
为了解决这些问题,IBM JDK 1.4.2版本中起用了pinnedFreeList来改变P簇的分配方法。方法的关键是在每一次GC(garbage collection)后,垃圾回收程序从未分配列表的底部分配一些存储区并把它们串到pinnedFreeList上。分配P簇的请求将从 pinnedFreeList分配空间,而其他分配内存的请求将从堆的未分配列表上分配。无论堆的未分配列表或者pinnedFreeList被耗尽,垃圾回收程序都会造成一次分配失败并且引起GC。这种方法确保所有的P簇被分配在堆空间尽可能低的位置。
垃圾回收程序按照如下的算法确定给pinnedFreeList分配多少存储空间:
●        初始分配的空间是50KB
●        如果不是初始分配并且pinnedFreeList为空,那么垃圾回收程序会比较50KB和从上一次GC到现在总共分配P簇大小5倍的数值,按照较大的数值分配
●        如果不是初始分配并且pinnedFreeList不为空,那么垃圾回收程序会比较P簇溢出设定值(默认为2K)和从上一次GC到现在总共分配P簇大小5倍的数值,按照较大的数值分配
这一算法在应用需要加载很多类的情况下会增大pinnedFreeList的大小。这样可以避免由于pinnedFreeList耗尽引起的分配失败。同时算法在分配很少P簇的情况下会减少pinnedFreeList的大小。这样可以避免pinnedFreeList占用过多的堆空间。
buildPinnedFreeList函数利用上面的算法构建pinnedFreeList。这个函数在如下地方会被调用:
●        在初始化簇(initializeClusters)时
●        在堆空间扩展(expandHeap)结束时
●        在gc0_locked结束时
垃圾回收程序通过调用nextPinnedCluster函数在pinnedFreeList中分配P簇。这个函数的工作方式类似于nextTLH工作方式:总是从pinnedFreeList获取下一个空的块。如果pinnedFreeList空了,会产生manageAllocFailure。
在realObjCAlloc里,如果在P簇中没有空间了,垃圾回收程序就会调用nextPinnedCluster函数分配一个新的P簇。
在初始化簇(initializeClusters)时,垃圾回收程序调用nextPinnedCluster,nextPinnedCluster会分配一个50K大小的初始P簇,因为pinnedFreeList中唯一的空余块的大小是50K。空余块的大小等于50K是因为 pinnedFreeList在初始状态下被设置为50K。
三、调整Java运行参数
对于一个大的Java应用,比如:WAS,默认的K簇可能不足以分配所有的类块。在IBM JDK 1.4.2版本中,可以通过使用-Xk和-Xp命令行参数来设定K簇和P簇的大小,例如:
-Xknnnn
其中nnnn代表K簇中可以容纳的类块的最大数目。通过添加Java的运行是参数-Dibm.dg.trc.print=st_verify  可以在GC的详细信息中得到合适nnnn的值,例如:
<GC(VFY-SUM): pinned=4265(classes=3955/freeclasses=0) dosed=10388 movable=1233792 free=5658>
pinned和classes的数值可以为-Xk的正确数值提供参考。一般推荐使用classes(3955)数值的110%左右,所以在这个例子中-Xk4200是一个合适的设置。
尽管,pinned和classes的数值之间的差值给pCluster的初始大小提供了线索。但是,因为每一个对象可能有不同的大小,所以很难预测P簇所需要的大小和P簇溢出的大小。用户可以通过-Xp命令行参数-Xp设定P簇的初始大小和溢出大小。例如:
-Xpiiii[K][,oooo[K]]
其中,iiii代表P簇的初始大小,单位是KB,oooo是可选的,代表溢出P簇(后续的P簇)的大小。iiii和oooo的默认值为16KB和2KB。
如果用户的应用确实遇到了堆空间碎片的问题,可以考虑打开GC的详细信息并使用-Dibm.dg.trc.print=st_verify参数,并从分析值中得到合适的-Xk值。如果问题依旧存在,可以考虑试验加大P簇的初始大小和溢出大小。
考虑的建议值:
-Xk20000 -Xp20000K, 256K

IBM JDK 1.5已经重新写了JVM。据说GC算法改了,碎片问题应该会好很多。

……………………………………………………………………………………………………………………………………………………………
也就是说,对于内存溢出的问题,不同jdk解决方式是不一样的,在优化代码的前提下
sun jdk 我们要把最大和最小内存分配一样,这样效率最高,而对于ibm jdk -Xk一般是-Xp的1/10
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值