NLP-二分类的应用-区分外卖评论好评/差评

一、概念

文本分类一般可以分为二分类、多分类、多标签分类三种情况。

  • 二分类是指将一组文本分成两个类(0或1),比较常见的应用如垃圾邮件分类、电商网站的用户评价数据的正负面分类等,
  • 多分类是指将文本分成若干个类中的某一个类,比如说门户网站新闻可以归属到不同的栏目中(如政治、体育、社会、科技、金融等栏目)去。
  • 多标签分类指的是可以将文本分成若干个类中的多个类,比如一篇文章里即描写政治又描写金融等内容,那么这篇文章可能会别贴上政治和金融两个标签。

二、二分类实战-划分好评/差评

1.处理步骤

  1. 将原始语料切词并过滤停用词
  2. 词向量初始化
  3. 构建模型并训练
  4. 测试

2.实战代码

1. 语料获取

本示例所用语料为某外卖平台用户的评论,共11987条样本数据, 其中正向评论样本4000条, 负向评论样本7987条
语料 waimai_10k.csv和停用词文本 stopwords.txt 的链接:https://pan.baidu.com/s/1WBJRCEDPJvJKdTFMYI_-JA?pwd=usz0

2.文本预处理

import jieba
import gensim

# 加载停用词
def stop_words(path='stopwords.txt'):
    with open(path,'r',encoding='gbk',errors='ignore') as f:
        return[l.strip() for l in f]


if __name__ == '__main__':
    # 加载停用词
    stop_words = stop_words()
    # 读取文件
    df = pd.read_csv("waimai_10k.csv")
    # 切词并过滤调停用词
    df["review"] = df["review"].map(lambda x: " ".join([i for i in jieba.cut(x) if i not in stop_words]))
    # 保存处理好的文本
    df.to_csv("waimai.csv", index=False, header=False, columns=["label","review"])

处理后的waimai.csv 如下:
waimai.csv

3.词向量初始化

import pandas as pd
import gensim

#词向量初始化
if __name__ == '__main__':
    df = pd.read_csv("waimai.csv", header=None)
    sentences = df.iloc[:, 1].astype("str").map(lambda x: x.split(" "))

    # vector_size (int, optional) – word向量的维度。
    # min_count (int, optional) – 忽略词频小于此值的单词。
    # workers (int, optional) – 训练模型时使用的线程数。
    model = gensim.models.Word2Vec(sentences, vector_size=128, workers=4, min_count=0)
    model.wv.save_word2vec_format('word_vec.txt', binary=False)

将词语转化为128维的向量
word_vec.txt 如下
在这里插入图片描述
4.模型训练及测试
先执行train()训练模型并保存,再执行之后的逻辑测试

# 模型搭建
import sys 
from collections import defaultdict

import jieba
import gensim
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split

# 建立一个字典(词-索引的映射), 一个表(索引-词向量的矩阵)
def build_embeddings_matrix(word_vec_model):
    # 初始化词向量矩阵
    embeddings_matrix = np.random.random((len(word_vec_model.key_to_index)+1, 128))
    # 初始化词索引字典
    word_index = defaultdict(dict)
    for index, word in enumerate(word_vec_model.index_to_key):
        word_index[word] = index + 1
        # 预留0行给查不到的词
        embeddings_matrix[index+1] = word_vec_model.get_vector(word)
    return word_index, embeddings_matrix

# 生成三组数据集(训练集, 验证集, 测试集)
def train_data(word_index):
    df = pd.read_csv("waimai.csv", names=["label","review"])
    df["word_index"] = df["review"].astype("str").map(lambda x: np.array([word_index.get(i, 0) for i in x.split(" ")]))
    
    # 填充及截断
    train = keras.preprocessing.sequence.pad_sequences(df["word_index"].values, maxlen=20, padding='post', truncating='post', dtype="float32")
    
    x_train, x_test, y_train, y_test = train_test_split(train, df["label"].values, test_size=0.2, random_state=1)
    # 从训练集上分出验证集
    x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.15)
    return x_train, x_val, x_test, y_train, y_val, y_test

# 构建模型
def build_model(word_index, embeddings_matrix):
    model = keras.models.Sequential()
    model.add(keras.layers.Embedding(input_dim=len(word_index)+1, 
                                    output_dim=128, 
                                    weights=[embeddings_matrix],
                                    input_length=20,
                                    trainable=False))
    model.add(keras.layers.GlobalAveragePooling1D())
    model.add(keras.layers.Dense(32, activation=tf.nn.relu))
    model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid))

    model.compile(optimizer=tf.keras.optimizers.Adam(),
                    loss='binary_crossentropy',
                    metrics=['accuracy'])
    model.summary()
    return model

#训练
def train():
    # 加载词向量
    word_vec_model = gensim.models.KeyedVectors.load_word2vec_format("word_vec.txt", binary=False)
    word_index,embeddings_matrix=build_embeddings_matrix(word_vec_model)
    x_train, x_val, x_test, y_train, y_val, y_test=train_data(word_index)
    
    model=build_model(word_index, embeddings_matrix)
    
    #训练,迭代50次
    model.fit(x_train, y_train, epochs=100, validation_data=(x_val, y_val))
    
    #评估,在测试集上进行效果评估
    results = model.evaluate(x_test, y_test)
    print(f"损失: {results[0]}, 准确率: {results[1]}")
    
    #保存模型
    model.save_weights('model/waimai_model')
    
if __name__ == '__main__':
    #train()
    
    word_vec_model = gensim.models.KeyedVectors.load_word2vec_format("word_vec.txt", binary=False)
    word_index, embeddings_matrix = build_embeddings_matrix(word_vec_model)
    model = build_model(word_index, embeddings_matrix)
    model.load_weights("model/waimai_model")
    
    while True:
        text = input("请输入一句话:")
        text = [word_index.get(word, 0) for word in jieba.cut(text)]
        text = keras.preprocessing.sequence.pad_sequences([text], maxlen=20, padding='post', truncating='post', dtype="float32")

        res = model.predict(text)[0][0]
        if res >= 0.5:
            print(f"好评, 得分: {res*100}")
        else:
            print(f"差评,得分: {res*100}")

        print()

结果:

请输入一句话: 一般般把,不太好吃

差评,得分: 17.57701188325882

请输入一句话: 快递小哥速度快的一批,饭又好吃,赞赞赞!

好评, 得分: 62.355756759643555
  • 5
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 17
    评论
### 回答1: 自然语言处理(Natural Language Processing,简称NLP)是计算机科学与人工智能领域的一个重要研究方向,目的是让计算机能够理解、处理和生成人类的自然语言。NLP-100例是一份经典的NLP问题集合,包含了各种与自然语言处理相关的问题和挑战。 这份NLP-100例涵盖了从基础的文本处理到更高级的自然语言理解和生成的问题。例如,其中包括了文本预处理、词频统计、语法分析、词性标注、实体识别、情感分析、机器翻译等任务。 NLP-100例的目的是帮助研究者和开发者更好地理解NLP领域的核心问题和技术,同时提供一些典型的案例和数据集供实践和研究使用。通过完成这些例题,可以锻炼自己在NLP领域的能力和技术,提高对自然语言的处理和理解能力。 此外,NLP-100例也为研究者提供了一个可以与其他人交流和探讨的平台。研究者可以使用相同的数据集和问题进行实验和评估,从而更好地了解NLP技术的优劣和进展。 总之,NLP-100例是一个对NLP进行实践和研究的重要资源。通过解决这些例题,可以深入理解自然语言处理的基础和技术,掌握各种NLP任务的方法和技巧。同时,它也是一个促进交流和合作的平台,为NLP研究者提供了一个共同的基础和语言。 ### 回答2: 自然语言处理(Natural Language Processing,简称NLP)是研究计算机与人类自然语言之间的交互的一门学科。NLP-100例指的是日本的一个NLP入门教程,包含了100个常见的NLP问题和对应的解答。 NLP-100例涵盖了从文本处理到语义理解等多个方面的问题。其中,一些例子包括:文本的分词、词性标注、句法分析、语义角色标注和文本分类等。 以分词为例,分词是将一段连续的文本分割成词语的过程。在NLP-100例中,可以通过使用Python中的分词工具NLTK(Natural Language Toolkit)来实现分词功能。 另外,对于文本的词性标注,NLP-100例提供了使用POS(Part-Of-Speech)标记对文本中的每个词进行词性标注的方法。可以使用NLTK提供的POS标注工具来实现。 此外,NLP-100例还包括了语义角色标注的问题,语义角色标注是为了确定句子中的谓语动词所承担的语义角色,如施事者、受事者、时间等。可以使用Stanford CoreNLP工具包来实现语义角色标注。 最后,NLP-100例还介绍了文本分类的问题,文本分类是将文本划分到预定义的类别中。可以使用机器学习算法,如朴素贝叶斯或支持向量机(SVM)等来进行文本分类。 通过学习NLP-100例,我们可以了解到自然语言处理的基本方法和技术,并且可以利用这些技术来解决相关的自然语言处理问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值