快速构造FFT/NTT

@(学习笔记)[FFT, NTT]

问题概述

给出两个次数为\(n\)的多项式\(A\)\(B\), 要求在\(O(n \log n)\)内求出它们的卷积, 即对于结果\(C\)的每一项, 都有\[c_i = \sum_{j = 0}^{n}a_j \cdot b_{i - j}\]

问题求解

大致思路

  • 朴素做法: 考虑按照上面的式子暴力运算, 时间复杂度: \(O(n^2)\)
  • 考虑把多项式化作点值表达, 记\[A(x) =\sum_{i = 0}^n a_i x^i\] 我们把\(A\)\(B\)的点值表达乘起来, 得到的就是\(C\)的点值表达, 即\[A(x) \cdot B(x) = C(x)\]
  • 我们把\(x \to A(x)\)的运算称作是DFT(离散傅立叶变换Discrete Fourier Transform)
  • 对于一个次数为\(n\)的多项式, 我们有它的\(n\)组不同点值表达, 通过点值表达求出原多项式的每一项的运算, 我们称之为IDFT(逆傅立叶变换)

DFT

考虑两个次数为\(n\)的多项式卷积, 得到的结果次数最高达到了\(2n - 1\). 所以我们至少需要\(2n - 1\)个结果的点值表达, 才足够把结果逆推出来(Hint: 为什么是\(2n-1\)个点值表达? 大体上可以从拉格朗日插值法来理解.).
考虑如何化简运算.
我们把多项式\(A\)拆分开奇数位和偶数位, 来计算它的点值表达. 我们令\(x_k\)为代入多项式计算的第\(k\)个值, 记\[f_0(x_k) = a_0 x_k^0 + a_2 x_k^1 + a_4 x_k^2 + ... + a_{2m} x_k^m\]
\[f_1(x_k) = a_1 x_k^1 + a_3 x_k^2 + a_5 x_k^3 + ... + a_{2m + 1} x_k^m\]
则我们发现原多项式可以被表示作\[f(x_k) = f_0(x_k^2) + x_k \cdot f_1(x_k^2)\]
这样, 求原来长度为\(len\)的多项式的点值表达, 就变成求2个长度为\(\frac{len}{2}\)的多项式的点值表达.
我们还注意到, 这里代入\(f_0\)\(f_1\)计算的值为\(x_k^2\). 假如我们代入的\(x_i\)\(x_j\)满足\(x_i^2 = x_j^2\)\(x_i \ne x_j\), 则只需要在\(f_0\)\(f_1\)中代入一个值进行运算, 再分别把\(f_1\)分别乘上\(x_i\)\(x_j\), 就可以一次处理出\(f(x_i)\)\(f(x_j)\)两个的结果. 这种优化手段就是FFT和NTT的基本思想.
考虑如何构造\(x_i^2 = x_j^2\).
这里我们以NTT为例. 在数论意义下, 根据费马小定理, 有\[g^{p - 1} \equiv 1 \mod p: p \in 素数\].
当我们要代入\(n\)个值计算多项式的点值表达时, 令\(x_0 = 1, x_1 = g^{\frac{p - 1}{n}} ... x_k = g^{\frac{p - 1}{n} \cdot k}\), 则有\[x_{k + \frac{n}{2}}^2 = \left( \left(g^{\frac{p - 1}{n}} \right)^{k + \frac{n}{2}} \right)^2 = \left( g^{\frac{p - 1}{n} \cdot k} \right)^2 \cdot g^{p - 1} \equiv \left( g^{\frac{p - 1}{n} \cdot k} \right)^2 = x_k^2 \mod p\]
则每个\(x_k\)都可以与\(x_{k + \frac{n}{2}}\)分为一组, 一起计算.
这样, 我们就可以在\(O(n \log n)\)内求出所需要的\(n\)个点值表达.

IDFT

我们把得到的点值表达看作是一个多项式, 再按照上面的DFT的做法搞一次, 得到这个点值表达的点值表达(大雾). 把每个点值表达都除以点值的个数, 即得到了\(C\)的每一项.
不会证.
结束.

Code

#include <cstdio>
#include <cctype>
#include <algorithm>
 
const int N = (int)5e4, P = 998244353, G = 3;
 
namespace Zeonfai
{
    inline int getInt()
    {
        int sgn = 1, a = 0;
        char c;
         
        while(! isdigit(c = getchar()))
            if(c == '-')
                sgn *= -1;
         
        while(isdigit(c))
            a = a * 10 + c - '0', c = getchar();
         
        return a * sgn;
    }
}
 
namespace convolution
{
    const int DEG = N << 2;
    int deg, rev[DEG], omega[DEG], inv[DEG];
 
    inline int modPower(int a, int x)
    {
        int res = 1;
 
        for(; x; a = (long long)a * a % P, x >>= 1)
            if(x & 1)
                res = (long long) res * a % P;
 
        return res;
    }
 
    inline void pretreat(int n, int m)
    {
        int sum = n + m;
        deg = 1;
        int bit = 0;
 
        for(; deg < sum; deg <<= 1, ++ bit);
 
        rev[0] = 0;
 
        for(int i = 1; i < deg; ++ i)
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1;
 
        for(int i = 0; 1 << i <= deg; ++ i)
            omega[i] = modPower(G, (P - 1) / (1 << i)), inv[i] = modPower(omega[i], P - 2);
    }
 
    inline void NTT(int *a, int opt)
    {
        for(int i = 0; i < deg; ++ i)
            if(rev[i] < i)
                std::swap(a[i], a[rev[i]]);
 
        int cnt = 0;
 
        for(int i = 2; i <= deg; i <<= 1)
        {
            ++ cnt;
            int curOmega = ~ opt ? omega[cnt] : inv[cnt];
 
            for(int j = 0; j < deg; j += i)
            {
                int omega = 1;
 
                for(int k = j; k < j + i / 2; ++ k)
                {
                    int u = a[k], t = (long long)omega * a[k + i / 2] % P;
                    a[k] = (u + t) % P, a[k + i / 2] = (u - t + P) % P;
                    omega = (long long)omega * curOmega % P;
                }
            }
 
        }
 
        if(opt == -1)
        {
            int inv = modPower(deg, P - 2);
 
            for(int i = 0; i < deg; ++ i)
                a[i] = (long long)a[i] * inv % P;
        }
    }
 
    inline void work(int *a, int n, int *b, int m)
    {
        pretreat(n, m);
        NTT(a, 1), NTT(b, 1);
 
        for(int i = 0; i < deg; ++ i)
            a[i] = (long long)a[i] * b[i] % P;
 
        NTT(a, -1);
 
        for(int i = 0; i <= n + m; ++ i)
            printf("%d ", a[i]);
    }
}
 
int main()
{
    #ifndef ONLINE_JUDGE
    freopen("polynomial.in", "r", stdin);
    freopen("polynomial.out", "w", stdout);
    #endif
 
    using namespace Zeonfai;
    int n = getInt(), m = getInt(), tp = getInt();
    static int a[N << 2], b[N << 2];
     
    for(int i = 0; i <= n; ++ i)
        a[i] = getInt();
     
    for(int i = 0; i <= m; ++ i)
        b[i] = getInt();
 
    convolution::work(a, n, b, m);
}

转载于:https://www.cnblogs.com/ZeonfaiHo/p/6790694.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值