- 博客(15)
- 收藏
- 关注
转载 pytorch遇到的问题
1.RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 'mat2'(期望对象为标量类型长,但得到标量类型浮点数)y= torch.matmul(x,w)解决:y = torch.matmul(x.float(), w.float())2.v...
2019-09-08 10:16:00 181
转载 卷积神经网络中的问题
1.反卷积http://www.360doc.com/content/19/0507/12/57110788_834069126.shtml转载于:https://www.cnblogs.com/cs-zzc/p/11463344.html
2019-09-08 10:16:00 211
转载 Tensor and autograd
1. t.Tensor 和t.tensor的不同 t.Tensor(size)可以直接创建形为size的张量 t.tensor()需要t.tensor([1, 2])创建.不论输入的类型是什么,t.tensor都会进行数据拷贝,不会共享内存2. resize()和view()的不同 resize()可以修改张量的大小,而view()只能调整形状3. ...
2019-09-08 10:15:00 101
转载 论文笔记:SRCNN
1.intro 图像超分辨率问题是在CV领域一个经典的问题。目前(2014)最先进的方法大多是基于实例的,主要包括利用图片的内部相似性,或者学习低分辨率高分辨率样本对的映射函数。后者往往需要大量的数据,但是目前有效性不足以令人满意并且无法精简模型。其中典型的是基于稀疏编码的方法,包括以下几步:先从图像中密集地抽取patch并进行预处理,然后使用low-resolution dict...
2019-09-08 10:15:00 214
转载 4.2 CNN实例探究
阅读他人的代码能够帮助你学习编程。类似的,研究他人开训练出的实例,有助于你构建自己的CNN。1.classicla network1.1 LeNet-5 n_H,n_W在减小,n_C在增加 一个或多个卷积层后边跟一个池化层 阅读论文:只需精读第二段1.2 AlexNet论文:任务被分到了两个GPU上处理 LRN局部响应归一...
2019-09-03 08:45:00 129
转载 4.1 卷积神经网络
1. 边缘检测2. Padding 为了解决两个问题: 1.输出缩小。卷积操作后图像由(n,n)变成了(n-f+1,n-f+1) 2.丢失图像边缘的大部分信息 在卷积操作前对图像边缘进行填充,填充p个像素点。则填充并进行卷积后图像尺寸为(n+2p-f+1, n+2p-f+1) 选择填充size:valid卷积:不填充 sa...
2019-09-03 08:44:00 119
转载 3 ML策略
1.正交化 通过电视机调节按钮的例子理解正交化。电视机的调节按钮有诸如调节图像高度、左右、旋转、大小等不同功能,而我们往往希望每一个按钮只控制一个功能,而这个按钮尽量不会影响到其他属性,这样更容易往我们想要的方向调节。拟合训练集训练更大的网络、切换更好的优化算法拟合验证集正则化、增大训练集拟合测试集增大开发集在实际中应...
2019-08-27 19:37:00 87
转载 2.3 超参数调试,batch正则化和程序框架
1.调试 1.1 超参数调试重要性顺序: 1. $\alpha$ 2.$\beta$, hidden units, mini-batch size 3.layers, learning rate decay 其他:若采用adam,则直接设定$\beta_{1}=...
2019-08-26 15:04:00 120
转载 2.2 优化算法
1. mini-batch梯度下降法 size=m:退化为batch,当训练样本过多时,单次迭代需要处理过多的训练样本 size=1:随机梯度下降法,产生大量噪声(但通过减小学习率,噪声可以减少),缺点是失去了向量化带来的加速。 使用mini-size,每次遍历所有样本时,可以进行m/size次梯度下降 选取原则:训练集较小时(<2000...
2019-08-22 17:13:00 198
转载 2.1 深度学习的实用层面
1. 训练集,验证集,测试集 当数据量较小时,可以分别占60%, 20%, 20%,当数据集规模很大时,验证集和测试集所占比例可以很小。2.偏差和方差 2.1判断 我们可以根据训练集误差,判断数据拟合情况,判断是否有偏差问题。之后根据验证集误差,判断方差是否过高。 2.2 解决 针对高偏差(欠拟合):使用更复杂网络,花费更多时间训练算法或者是用优化算法,(或...
2019-08-20 18:53:00 99
转载 Lecture4 反向传播算法
先放两个链接 https://www.zhihu.com/question/27239198/answer/89853077 https://www.cnblogs.com/charlotte77/p/5629865.html参数的展开 在使用高级优化方法训练神经网络模型时(fminunc),需要以向量形式传递参数,而我们在神经网络中的$\theta_{1},,...
2019-08-08 16:09:00 92
转载 Lecture3 神经网络学习
1.introduce 当属性增多时,由于我们的特征可以取属性的多项式组合,代价将呈指数增长,很难计算。因此,我们需要一种合适的方法来解决特征变量过多的问题。 由此我们从人的大脑与神经元开始,实验表明,人的大脑不同皮层均具有学习能力,并非仅仅能够完成本区域固定的任务。例如,将视觉信号接入听觉皮层,听觉皮层一样可以完成处理视觉信号的任务。神经元有一个轴突和若干树突。若干树突接受...
2019-08-07 17:32:00 93
转载 ubuntu 安装后需要做的事
1.设置国内源2.安装chrome https://www.cnblogs.com/tcppdu/p/10051675.html3.安装搜狗输入法 https://www.cnblogs.com/zhuangmingnan/p/9496499.html4.删除自带垃圾sudo apt-ge...
2019-08-07 17:32:00 120
转载 Lecture2 逻辑回归及正则化
1.逻辑回归1.1 introduce 逻辑回归用于分类问题,例如判断一封邮件是否为垃圾邮件,一颗肿瘤为恶性肿瘤还是良性肿瘤。 如图所示,若依然使用线性回归训练模型,则本来拟合的曲线为左边那条,加入最右上角的数据后,拟合的曲线斜率减小了。因此我们需要改变策略,可以设定一个固定的阈值0.5,超过0.5则预测为1,低于0.5则预测为0。 因此,我们应...
2019-08-04 17:17:00 154
转载 Lecture1 线性回归
1.基础 先举房屋价面积x与房屋价格y间关系的例子,给出一系列数据集,数据集中包含不同房屋的面积与其对应价格,通过学习,得到一种算法,该算法可根据输入的房屋面积x,自动预测出价格y.1)假设函数h(hypothesis),经由学习算法在训练集上产生,输入x,产生估算的结果2)代价函数(cost function):即训练误差,在训练模型过程中需要合理选择模型的参数,使得...
2019-08-04 15:50:00 133
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人