梯度下降算法原理

梯度下降算法原理

本文主要简略介绍梯度下降算法的原理。梯度下降就像在一个山谷中行走,不断迈出在当前位置下降最快的那一步,直到找到一个最低点也就是收敛点,当然这个点可能是局部最优解而非全局最优解。

平方误差代价函数

我们假设有一个共包含 m 个样本的训练集 { x i , y i } , i = 1 , 2 , . . . , m \{x^i,y^i\},i=1,2,...,m {xi,yi},i=1,2,...,m,x和y的关系如下图所示:
在这里插入图片描述
我们假设 h(x)是拟合出的关于x和y关系的曲线,如果y是连续的则为回归问题,如果y是离散的则为分类问题。 函数 h ( x ) h(x) h(x)如下所示,其中 θ \theta θ为参数:
h θ ( x ) = θ 0 + θ 1 × x + . . . h_\theta(x)=\theta_0+\theta_1\times x+... hθ(x)=θ0+θ1×x+...
则平方误差代价函数为:
J ( θ 0 , θ 1 , . . . ) = 1 2 m ∑ i = 1 m ( h θ ( x i ) − y i ) 2 T a s k = m i n i z e ( J ) J(\theta_0,\theta_1,...)=\frac{1}{2m} \sum^m_{i=1}(h_\theta(x^i)-y^i)^2\\ Task=minize(J) J(θ0,θ1,...)=2m1i=1m(hθ(xi)yi)2Task=minize(J)
梯度下降算法所要做的就是将 J ( θ 0 , θ 1 , . . . ) J(\theta_0,\theta_1,...) J(θ0,θ1,...)最小化,使假设函数 h ( x ) h(x) h(x)尽可能拟合真实情况。

进行偏微分计算不断更新参数

在初始化了参数 θ \theta θ 之后,接下来进行偏微分计算不断 同步更新 θ \theta θ,此处要注意是同步更新,不能将更新了 θ 0 \theta_0 θ0 后的 J J J 代入对 θ 1 \theta_1 θ1 的更新计算中。假设学习速度(learning rate)为 α \alpha α,学习速度的大小选取要适当,过大容易错过收敛点,过小则需要迭代太多次,更新参数的过程如下:
t e m p j = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 , . . . ) θ j = t e m p j temp_j = \theta_j-\alpha\frac{\partial}{\partial \theta_j}J(\theta_0,\theta_1,...)\\ \theta_j=temp_j tempj=θjαθjJ(θ0,θ1,...)θj=tempj
越接近局部最优解时, ∂ ∂ θ j J ( θ 0 , θ 1 , . . . ) \frac{\partial}{\partial \theta_j}J(\theta_0,\theta_1,...) θjJ(θ0,θ1,...) 的值越小,不断重复这个更新参数的过程直至收敛,这时得到的 h θ ( x ) h_\theta(x) hθ(x) 即为拟合效果较好的函数。

梯度下降代码(Python)

本文代码主要参考了博客梯度下降算法原理讲解——机器学习,代码编写过程中,将所有的公式都转换为矩阵的形式,python中矩阵计算比较方便,同时也会使代码更简洁。
预测函数 h ( x ) h(x) h(x) 转化为如下形式:
h Θ ( x ) = Θ 0 + Θ 1 × x + . . . h_\Theta(x)=\Theta_0+\Theta_1\times x+... hΘ(x)=Θ0+Θ1×x+...
假设 θ \theta θ 有两个,为了便于进行矩阵化,给每一个点x增加一维,这一维的值固定为1,这一维将会乘到 Θ 0 \Theta_0 Θ0上。则 x 0 i x_0^i x0i Θ 0 \Theta_0 Θ0 相乘后仍为 Θ 0 \Theta_0 Θ0 x 1 i x_1^i x1i 为原来的 x i x^i xi。这样就方便我们统一矩阵化的计算:
( x 1 i , y i ) − > ( x 0 i , x 1 i , y i ) h Θ ( x ) = Θ × X (x_1^i,y^i)->(x_0^i,x_1^i,y^i)\\ h_\Theta(x)=\Theta\times X (x1i,yi)>(x0i,x1i,yi)hΘ(x)=Θ×X
代价函数和梯度(偏微分计算)转化为如下形式:
J ( Θ ) = 1 2 m ( h Θ ( x ) − Y ) T ( h Θ ( x ) − Y ) ∇ J ( Θ ) = 1 m X T ( h Θ ( x ) − Y ) J(\Theta)=\frac{1}{2m}( h_\Theta(x)-Y)^T( h_\Theta(x)-Y)\\ \nabla J(\Theta)=\frac{1}{m}X^T(h_\Theta(x)-Y)\\ J(Θ)=2m1(hΘ(x)Y)T(hΘ(x)Y)J(Θ)=m1XT(hΘ(x)Y)
Python代码如下:

from numpy import *

# 数据集大小 即20个数据点
m = 20
# x的坐标以及对应的矩阵
X0 = ones((m, 1))  # 生成一个m行1列的向量,也就是x0,全是1
X1 = arange(1, m+1).reshape(m, 1)  # 生成一个m行1列的向量,也就是x1,从1到m
X = hstack((X0, X1))  # 按照列堆叠形成数组,其实就是样本数据
# 对应的y坐标
Y = array([
    3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
    11, 13, 13, 16, 17, 18, 17, 19, 21
]).reshape(m, 1) # m行1列
# 学习速度
alpha = 0.01


# 定义代价函数J
def cost_function(theta, X, Y):
    # h = X*\Theta
    diff = dot(X, theta) - Y  # dot() 数组需要像矩阵那样相乘,就需要用到dot()
    return (1/(2*m)) * dot(diff.transpose(), diff)# h的转置和h相乘


# 定义代价函数对应的梯度函数(偏微分计算)
def gradient_function(theta, X, Y):
    diff = dot(X, theta) - Y
    return (1/m) * dot(X.transpose(), diff)


# 梯度下降迭代
def gradient_descent(X, Y, alpha):
    # reshape成2行1列说明是两个\theta参数,如果\theta参数需要更多此处需要更改
    theta = array([1, 1]).reshape(2, 1)
    gradient = gradient_function(theta, X, Y)
    while not all(abs(gradient) <= 1e-5): # 当梯度小于1e-5时,停止迭代
        theta = theta - alpha * gradient
        gradient = gradient_function(theta, X, Y)
    return theta


optimal = gradient_descent(X, Y, alpha)
print('optimal:', optimal)
print('cost function:', cost_function(optimal, X, Y)[0][0])


# 根据数据画出对应的图像
def plot(X, Y, theta):
    import matplotlib.pyplot as plt
    ax = plt.subplot(111)  # 图像为一行一列分布在第一块
    ax.scatter(X, Y, s=30, c="red", marker="s")
    plt.xlabel("X")
    plt.ylabel("Y")
    x = arange(0, 21, 0.1)  # x的范围
    y = theta[0] + theta[1]*x
    ax.plot(x, y)
    plt.show()


plot(X1, Y, optimal)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值