机器学习轻松入门专栏
文章平均质量分 81
丰富的图表,完整易懂的代码,带大家轻松入门机器学习!
upDiff
专注于计算机视觉和深度学习领域,8年+AI项目实战经验。善于将复杂的概念简化为易于理解的形式,并提供清晰的示例代码和运行结果,帮助大家速掌握相关技术。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于scikit-learn求向量/矩阵的L1范数和L2范数
示例代码如下:from sklearn import preprocessing import numpy as npX = [[ 1., -1., 2.], [ 2., 0., 0.], [ 0., 1., -1.]]X_l1 = preprocessing.normalize(X, norm='l1')X_l1# array([[ 0.25, -0.25, 0.5 ],# [ 1. , 0. , 0. ],# [原创 2020-10-10 10:58:51 · 780 阅读 · 0 评论 -
如何设置神经网络中神经元和网络层的数量?
导语对于机器学习初学者而言,对这样两个问题会比较困惑:1) 给定神经网络,如何确定中间层数数?2)如何确定每个中间层的神经元数量?神经网络模型有个重要的定理,就是万能逼近原理,它指的是存在一个足够大的网络能够达到我们所希望的任意精度。不过这个定理没有给出具体计算网络层数和神经元个数的方法。真正了解哪种架构最有效以及最暴力的唯一方法是尝试所有架构,然后选择最佳架构。然而对于神经网络而言,这非常困难,因为每种模型都需要花费很多时间来训练。有种做法是先训练一个过大的模型,然后通过消除对网络没有太原创 2020-07-12 15:52:04 · 7422 阅读 · 0 评论 -
机器学习中的Bias和Variance是指什么
首先明确一点,Bias和Variance是针对Generalization(一般化,泛化)来说的。在机器学习中,我们用训练数据集去训练(学习)一个model(模型),通常的做法是定义一个Loss function(误差函数),通过将这个Loss(或者叫error)的最小化过程,来提高模型的性能(performance)。然而我们学习一个模型的目的是为了解决实际的问题(或者说是训练数据集这个领域...转载 2019-12-23 16:03:24 · 1849 阅读 · 0 评论