-
Title: 2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
-
Affiliation: National University of Singapore, Department of Electrical and Computer Engineering
-
Authors: Mikhail Kennerley, Jian-Gang Wang, Bharadwaj Veeravalli, and Robby T. Tan
-
Keywords: object detection, unsupervised domain adaptation, night-time images, student-teacher framework, pseudo-labels
-
Summary:
-
(1):该论文研究背景是夜间物体检测是一项具有挑战性的任务,因为夜间图像缺少人工标注。近年来,领域自适应方法被用于处理这一问题。
-
(2):过去的方法包括基于对抗学习的方法和基于学生-教师框架的方法,但这些方法在小尺度和低光下的物体检测中存在错误传递问题。本文提出了一个两阶段一致性培训的无监督领域适应网络(2PCNet),以解决这些问题。该方法使用教师在第一阶段的高置信度边界框预测,将其添加到学生的区域建议中,用于在第二阶段由教师重新评估,产生高置信和低置信伪标签的组合。夜间图像和伪标签被缩小,然后用作学生的输入,提供更强大的小尺度伪标签。为了解决低光区域和其他夜间相关属性引起的错误,本文提出了一个名为NightAug的夜间特定的增强管道,其中包括对白天图像应用随机增强,如 glare、模糊和噪音。虽然过去的方法存在问题,但是本文的方法提出的合理。
-
(3):本文的研究方法是一个两阶段一致性培训的无监督领域适应网络(2PCNet),其中学习分两个阶段。在第一个阶段,教师网络生成高置信度的边界框预测,将它们添加到学生网络的建议区域中。在第二个阶段,教师网络重新评估带有高/低置信度的伪标签并反馈给学生网络。
-
(4):本文在公开数据集上的实验显示,2PCNet优于先前的无监督领域自适应算法,相对于目标数据的有监督模型提高了20%的检测性能。因此,该方法可以很好地支持他们的目标。
- Methods:
-
(1): 本文提出了一个名为2PCNet的无监督领域适应网络方法,该方法利用学生-教师框架进行两阶段一致性训练。在第一阶段,教师网络使用夜间图像提供高置信度边界框预测,并将它们添加到学生网络的区域建议中。在第二阶段,教师网络重新评估伪标签,并将带有高/低置信度的伪标签反馈给学生网络,以训练学生网络对夜间图像进行检测。
-
(2): 为了克服小尺度物体检测误差传递的问题,本文采用了一种分别缩小夜间图像和伪标签的方法。学习缩小尺度后的伪标签有助于学生网络对小尺度目标的检测。
-
(3): 为了解决低光照下的错误检测问题,本文使用了一个名为NightAug的夜间图像增强管道。该管道对白天图像应用随机增强,包括 glare、模糊和噪音等,以模拟夜间图像的特征,并将其应用于学习阶段。
-
(4): 本文在两个无监督领域自适应目标检测数据集上进行了实验,结果显示2PCNet的性能比之前的算法更好,并且相对于有监督模型提高了20%的检测性能。
- Conclusion:
-
(1): 本研究通过提出一个两阶段一致性训练的无监督领域适应网络(2PCNet),成功解决了夜间无监督物体检测的挑战性问题。其具有重要的实际应用价值。
-
(2): 创新点:2PCNet提出了一个两阶段一致性培训的无监督领域适应网络,有效地解决了以往方法在小尺度和低光下存在的误差传递问题。性能:与现有无监督领域自适应方法相比,2PCNet在两个公共数据集上均取得了更好的表现,相对于有监督模型提高了20%的检测性能。工作量:本文提出的方法不仅有效,而且高效,可以加快夜间无监督物体检测模型的训练速度。