NeRF从0到1
文章平均质量分 68
Neural Radiance Fields (NeRF) 是一种深度学习模型,用于生成逼真的三维场景重建和渲染。本专栏中将深入介绍NeRF以及后续升级版的原理、网络结构、训练过程和应用案例,帮助大家更好地理解和应用NeRF技术。
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
upDiff
专注于计算机视觉和深度学习领域,8年+AI项目实战经验。善于将复杂的概念简化为易于理解的形式,并提供清晰的示例代码和运行结果,帮助大家速掌握相关技术。
展开
-
【NeRF原理】第四章:NeRF模型训练与推理详解
1-模型训练全流程: 详细介绍NeRF模型的训练流程,包括数据准备、损失函数和优化算法等。2-模型推理流程: 解释NeRF模型的推理流程,包括如何生成高质量的图像和体积渲染结果。购买本专栏后,可通过CSDN官方在本博客最后提供的微信名片添加我,提供1v1答疑。第四章:NeRF模型训练与推理。【前方多图,流量预警!原创 2023-12-02 19:31:24 · 1172 阅读 · 0 评论 -
【NeRF原理】第三章:计算机图形学背景补充
购买本专栏后,可通过CSDN官方在本博客最后提供的微信名片添加我,提供1v1答疑。1-相机原理: 讲解相机的基本原理和参数,为后续的图像渲染和体渲染提供基础。2-图像渲染: 介绍图像渲染的基本概念和技术,包括光照模型、阴影和纹理等。3-体渲染: 探讨体渲染的基本原理和方法,包括体积数据表示和光线传播等。第三章:计算机图形学背景补充。【前方多图,流量预警!原创 2023-12-02 19:21:14 · 482 阅读 · 0 评论 -
【NeRF原理】第二章:从AI视角理解NeRF
1-模型结构: 详细介绍NeRF的模型结构,包括多层感知机(MLP)和位置编码等关键组件。购买本专栏后,可通过CSDN官方在本博客最后提供的微信名片添加我,提供1v1答疑。2-MLP+位置编码+?=NeRF: 解释MLP、位置编码和NeRF之间的关系。第二章:从纯AI视角理解NeRF。原创 2023-12-02 18:55:24 · 429 阅读 · 0 评论 -
【NeRF原理】第一章:NeRF概述
本专栏对应视频课程位于:https://edu.csdn.net/course/detail/39038原创 2023-11-28 08:03:19 · 595 阅读 · 0 评论 -
【nerfStudio】6-nerfStudio数据格式转换
使用OpenGL/Blender(以及原始NeRF)的坐标约定来表示相机。+X表示向右,+Y表示向上,+Z指向相机的后方和远离相机。-Z是视线方向。其他代码库可能使用COLMAP/OpenCV约定,其中Y和Z轴与本约定相反,但+X轴保持不变。原创 2023-09-06 07:14:12 · 652 阅读 · 0 评论 -
【nerfStudio】5-nerfStudio导出3D Mesh模型
在这里我们将介绍如何从nerfstudio中导出点云和网格。您将使用的主要命令是ns-export。我们将点云导出为.ply文件,纹理网格导出为.obj文件。原创 2023-09-05 07:29:41 · 2242 阅读 · 0 评论 -
【nerfStudio】2-基于nerfStudio训练第一个NeRF模型
Nerfstudio允许以强大的方式从CLI自定义训练和评估配置,但需要了解一些事情。CLI结构的最具示例性和有用的例子是以下命令之间输出的差异:以下内容将列出支持的模型在模型规范之后应用--help将提供模型和训练特定的参数。在命令的末尾,可以指定使用的数据解析器。默认情况下使用_nerfstudio-data_数据解析器。同时还包括其他数据解析器,如_Blender_、_NuScenes_等。要获得特定数据解析器的参数列表,请在命令的末尾添加--help。原创 2023-09-04 07:52:34 · 659 阅读 · 0 评论 -
【nerfStudio】1-在windows上安装nerfStudio
安装Git。安装Visual Studio 2022。在安装CUDA之前必须完成此步骤。必须在“桌面开发与C++”工作流程(在BuildTools版本中称为“C++构建工具”)中包含所需的组件。Nerfstudio要求。我们建议使用conda来管理依赖关系。在继续之前,请确保安装了Conda。依赖关系PyTorch请注意,如果安装了低于2.0.1的PyTorch版本,则应卸载先前版本的pytorch、functorch和tiny-cuda-nn。基于CUDA 11.8的Torch 2.0.1安装基原创 2023-09-04 07:12:19 · 985 阅读 · 0 评论 -
基于Open3D和PyTorch3D读取三维数据格式OBJ
在上面的代码片段中,可以使用Open3D的draw_geometries函数交互式地可视化立方体的网格。请注意,这里在PyTorch3D中使用的顶点索引是从0开始的,索引从0开始。然而,在OBJ文件中,顶点索引是从1开始的,索引从1开始。根据此处的代码片段输出,我们知道返回的vertices变量是一个形状为8 x 3的PyTorch张量,其中每一行是一个具有x、y和z坐标的顶点。在第二个示例中,我们将使用一个名为cube_texture.obj的示例文件来突出显示更多的OBJ文件特性。原创 2023-09-02 11:16:03 · 1815 阅读 · 0 评论 -
三维数据Ply格式介绍与读取
但是,这次我们将获得几个PyTorch张量,例如一个用于顶点的张量和一个用于面的张量。当运行此代码片段时,返回的顶点应该是一个形状为[8, 3]的PyTorch张量 - 也就是说,有八个顶点,每个顶点有三个坐标。类似地,返回的面应该是一个形状为[12, 3]的PyTorch张量 - 也就是说,有12个面,每个面有3个顶点索引。cube.ply文件定义了一个由八个顶点和六个面组成的立方体的网格,每个面由两个面组成。例如,三个数字-1,-1,-1指定顶点的x坐标为-1,y坐标为-1,z坐标为-1。原创 2023-09-02 11:07:37 · 657 阅读 · 0 评论